Hydraulic calculation of gravity transportation pipeline system for backfill slurry

2008 ◽  
Vol 15 (5) ◽  
pp. 645-649 ◽  
Author(s):  
Qin-li Zhang ◽  
Guan-yu Hu ◽  
Xin-min Wang
Author(s):  
Марат Замирович Ямилев ◽  
Азат Маратович Масагутов ◽  
Александр Константинович Николаев ◽  
Владимир Викторович Пшенин ◽  
Наталья Алексеевна Зарипова ◽  
...  

Теплогидравлический расчет неизотермических трубопроводов является наиболее важным гидравлическим расчетом в рамках решения задач обеспечения надежности и безопасности работы нефтепроводной системы. Для практических расчетов применяются формулы Дарси - Вейсбаха и Лейбензона. При этом в ряде случаев (короткие теплоизолированные участки, поверхностный обогрев нефтепроводов) можно использовать упрощенный подход к расчету, пренебрегая изменением температуры или учитывая температурные поправки. В настоящее время формулы для аналитического расчета движения высоковязких нефтей в форме уравнения Лейбензона получены только для ньютоновской и вязкопластичной жидкостей. Для степенной жидкости соответствующие зависимости отсутствуют, расчет ведется с использованием формулы Дарси - Вейсбаха. Целью настоящей статьи является представление формулы Дарси - Вейсбаха для изотермических течений степенной жидкости в форме уравнения Лейбензона. Данное представление позволит упростить процедуру проведения аналитических выкладок. В результате получены модифицированные уравнения Лейбензона для определения потери напора на участке нефтепровода в диапазоне индекса течения от 0,5 до 1,25. В указанном диапазоне относительное отклонение от результатов расчетов с использованием классических формул Метцнера - Рида и Ирвина не превышает 2 %. The thermal-hydraulic calculation of non-isothermal pipelines is the most important hydraulic calculation in the framework of solving the problems of ensuring the reliability and safety of the oil pipeline system. For practical calculations, the Darcy - Weisbach and Leibenson formulas are used. Moreover, in a number of cases (short heat-insulated sections, surface heating of oil pipelines), a simplified approach to the calculation can be used, neglecting temperature changes or taking into account temperature corrections. At present, formulas for the analytical calculation of the motion of high-viscosity oils in the form of the Leibenson equation have been obtained only for Newtonian and viscoplastic fluids. For a power-law fluid, there are no corresponding dependences; the calculation is carried out using the Darcy - Weisbach formula. The purpose of this article is to present the Darcy - Weisbach formula for isothermal flows of a power-law fluid in the Leibenzon form, which will simplify the procedure for performing analytical calculations. The modified Leibenzon equations are obtained to determine the head loss in the oil pipeline section in the range of the flow index from 0.5 to 1.25. In the specified range, the relative deviation from the results of calculations using the classical Metzner - Reed and Irwin formulas does not exceed 2 %.


2011 ◽  
Vol 63-64 ◽  
pp. 502-506 ◽  
Author(s):  
Xiao Liang Feng ◽  
Xue Jun Xu

Geographic Information Systems (GIS) are designed to support the management, manipulation, analysis, and modeling of spatial data. Water supply pipeline network is a system which has a large of spatial attribute data. In order to improve the managing and working efficiency, the paper proposed a new method for designing the long distance pipeline based on GIS. Seamless integration of GIS platform, hydraulic model of long distance pipeline is built which is base of hydraulic calculation. The model is based on building pipeline concise model dynamic. The hydraulic calculation is to guarantee the authenticity of the model which can help to simulate the whole system status and analyze the condition of long distance pipeline. The pressure and safety coefficient models of long pipeline based on GIS can help operator to know the details of every segment in the long distance pipeline system. The method locates the weakness of long distance pipeline and displayed impressively on GIS platform. All the technologies strengthen the security of the pipeline design, improve the accuracy of hydraulic calculation, and help operators to analyze the long distance pipeline condition by spatial visualization. The example shows that the method is reasonable, effective, and has been applied to practical project.


Author(s):  
Xiaomei Wang ◽  
Guoqun Chen ◽  
Lei Shi ◽  
Zheng Zhang ◽  
Zihua Zhao ◽  
...  

To ensure the safety of heated waxy crude oil pipeline with in-line rehabilitation, the allowable exposed length and the impending length of the pipe will be respectively determined by using the thermal and hydraulic calculation method for buried heated crude pipeline and Safety Assessment for In-service Pressure Vessels with Defects. In addition, with the elastic foundation beam model, safety measures of backfilling with sand compacted are proposed based on the calculation of the pipe bending stress distribution after backfilling. In this research, a software package has been developed to compute the reasonable exposed length and the impending length of the pipeline in any position and operating condition. The obtained results with comprehensive considering most of key factors are reliable and reasonable which brings the advantages of safety and economy. The technical parameters and manuals obtained have been successfully applied to guide the in-line rehabilitation of China’s Northeast pipeline system.


Author(s):  
Сергей Евгеньевич Кутуков ◽  
Ольга Витальевна Четверткова ◽  
Андрей Иванович Гольянов

Проблема повышения точности технологических расчетов нефтепроводов обрела особую остроту на фоне модернизации системы обнаружения утечек и разработки программного обеспечения в области планирования грузопотоков в системе магистральных трубопроводов. Расхождение результатов гидравлических расчетов и фактических параметров перекачки вызвано, в частности, такими факторами, как игнорирование мультифазного характера течения нефти (особенно на недогруженных участках нефтепроводов, проложенных по пересеченной местности), отсутствие актуальных данных по состоянию длительно эксплуатируемых труб, применение методик расчета потерь энергии на трение, базирующихся на постулатах классической гидравлики. В настоящей статье авторами предложен метод определения гидравлической характеристики трубопровода на установившемся режиме эксплуатации, перекачивающего неньютоновские реологически сложные нефти в диапазоне малых скоростей сдвига, который предполагает непосредственную интерпретацию экспериментальных данных вискозиметрии и исключает погрешности аппроксимации кривой течения реологической моделью и осреднения параметра вязкости. С этой целью рассмотрены вопросы аномалии вязкости и тиксотропии неньютоновских нефтей. Дано обоснование предлагаемого метода и представлено практическое приложение излагаемой методики на примере анализа гидравлической характеристики магистрального нефтепровода Атырау-Самара, по которому транспортируется смесь нефтей с частично разрушенной внутренней структурой. The problem of improving the accuracy of technological calculations for oil pipelines has become especially acute against the background of modernization of the leak detection system and development of software in the field of planning cargo flows in the trunk pipeline system. Discrepancy between hydraulic calculation results and actual pumping parameters is caused, in particular, by such factors as ignoring the multiphase oil flow nature (especially in under-loaded sections of oil pipelines laid over rough terrain), the lack of up-to-date data on the state of long-operating pipes, the use of methods for calculating friction-related energy losses based on the postulates of classical hydraulics. In this article, the authors propose a method for determining the hydraulic characteristics of a pipeline at steady state operation, pumping non-Newtonian rheologically complex oils in the range of low shear rates, which implies a direct interpretation of experimental viscometry data, excluding errors in approximating the flow curve by a rheological model and averaging the viscosity parameter. For this purpose, the anomaly of viscosity and thixotropy of non-Newtonian oils are considered. The article provides a substantiation of the proposed method and presents a practical application of the described technique by the example of the analysis of the hydraulic characteristics of the Atyrau-Samara main oil pipeline, through which an oil blend with partially destroyed internal structure is transported.


Author(s):  
N. Baranchikova ◽  
S. Epifanov ◽  
Valerii, Zorkal’tsev ◽  
Leonid, Korel’stein

В последние десятилетия резко возросло строительство крупных зданий: торговоразвлекательных центров, многофункциональных высотных зданий жилого и общественного назначения, в том числе с подземными автостоянками, складских помещений для хранения горючих материалов. При строительстве часто используют отделочные материалы, которые при возгорании выделяют отравляющие вещества. Пожары могут приводить к человеческим жертвам и значительным материальным потерям. Для пожарной безопасности зданий и сооружений наиболее эффективно использование противопожарного водоснабжения как наружного, так и внутреннего. Изза невозможности обеспечить наружное пожаротушение большой части помещений верхних этажей высотных зданий особое значение приобретает эффективность и надежность систем внутреннего пожаротушения. Расход воды на противопожарное водоснабжение может составлять 200 л/с и более. Для подачи воды в таком объеме к местам возгорания требуются эффективные системы внутреннего водоснабжения: автоматические системы пожаротушения (спринклерные и дренчерные), внутренний противопожарный водопровод, дренчерные водяные завесы. Совмещенные системы внутреннего пожаротушения включают автоматические установки пожаротушения и внутренний противопожарный водопровод. Методика гидравлического расчета каждой из этих систем имеется в нормативной и специальной литературе. Но при гидравлическом расчете совмещенных (объединенных) систем противопожарного водоснабжения следует учитывать их существенные особенности. В связи с этим рассматривается математическая модель потокораспределения в автоматических системах пожаротушения, совмещенных с внутренним противопожарным водопроводом. Приводится методика гидравлического расчета произвольных совмещенных систем противопожарного водоснабжения. Предлагаемая модель позволяет получать реальную величину отбора воды через насадки (распылители) и пожарные ручные стволы.In recent decades the construction of large buildings has risen sharply: shopping and entertainment centers, multifunctional highrise buildings for residential and public purposes with underground parking lots, storage facilities for the storage of combustible materials. During construction finishing materials are often used that emit toxic substances if ignition occurs. Fires can result in fatalities and substantial material losses. For the fire safety of buildings and structures the use of firefighting water supply both outdoor and internal is most effective. Due to the inability to provide for outdoor firefighting of a large part of the premises of the upper floors of highrise buildings, the effectiveness and reliability of internal firefighting systems is of particular importance. Water consumption for fire water supply can be 200 l/s or more. To supply water in such a volume to the fire points, effective internal fire water supply systems are required: automatic firefighting systems (sprinkler and deluge), internal fire water pipelines, deluge water curtains. Combined internal firefighting systems include automatic firefighting installations and internal firefighting water pipeline. The method of hydraulic calculation of each of these systems is available in the regulatory and specialized literature. However, in the process of hydraulic calculations of combined (integrated) firefighting water supply systems, their essential features should be taken into account. In this regard, a mathematical model of flow distribution in automatic firefighting systems combined with an internal fire water pipeline system is considered. The technique of hydraulic calculation of arbitrary combined firefighting water supply systems is given. The proposed model allows you to get an actual value of water abstraction through nozzles (sprayers) and hand control branch pipes.


2020 ◽  
Vol 7 (3) ◽  
pp. 37-44
Author(s):  
KONSTANTIN NAPREENKO ◽  
◽  
ROMAN SAVELEV ◽  
ALEKSEY TROFIMOV ◽  
ANNA LAMTYUGINA ◽  
...  

The article discusses methods for determining the hydraulic resistance of units of an accident-resistant fuel system. A detailed description of the need to create such fuel systems for modern helicopters is given. The development of such systems today is impossible without the use of the method of mathematical modeling, which allows to qualitatively solve problems arising in the design process. To obtain accurate research results, it is necessary to have a complete description of all elements and assemblies of the system. Methods for determining the hydraulic characteristics of AFS elements using the drag coefficient, reference literature and CFD codes are considered. As the investigated AFS units, a drain valve and burst fitting were studied in the article. A hydraulic calculation of these AFS elements ware performed, the simulation results are presented in the ANSYS CFX software package. Also as the calculation results of bursting fitting, the pressure distribution fields of full and static pressure, velocity and streamlines are also shown. An experimental setup for validating the results obtained using the mathematical modeling method is considered, as well as a methodology for conducting a full-scale experiment to determine the hydraulic resistance of the unit. Materials have been prepared for inclusion in a one-dimensional mathematical model of an accident-resistant fuel system.


Author(s):  
Marat R. Lukmanov ◽  
◽  
Sergey L. Semin ◽  
Pavel V. Fedorov ◽  
◽  
...  

The challenges of increasing the energy efficiency of the economy as a whole and of certain production sectors in particular are a priority both in our country and abroad. As part of the energy policy of the Russian Federation to reduce the specific energy intensity of enterprises in the oil transportation system, Transneft PJSC developed and implements the energy saving and energy efficiency improvement Program. The application of energy-saving technologies allowed the company to significantly reduce operating costs and emissions of harmful substances. At the same time, further reduction of energy costs is complicated for objective reasons. The objective of this article is to present additional methods to improve the energy efficiency of oil transportation by the example of the organizational structure of Transneft. Possibilities to reduce energy costs in the organization of the operating services, planning and execution of work to eliminate defects and preparatory work for the scheduled shutdown of the pipeline, the use of pumping equipment, including pumps with variable speed drive, the use of various pipelines layouts, changing the volume of oil entering the pipeline system and increase its viscosity.


2008 ◽  
Vol 59 (4) ◽  
Author(s):  
Fred Starr ◽  
Calin-Cristian Cormos ◽  
Evangelos Tzimas ◽  
Stathis Peteves

A hydrogen energy system will require the production of hydrogen from coal-based gasification plants and its transmission through long distance pipelines at 70 � 100 bar. To overcome some problems of current gasifiers, which are limited in pressure capability, two options are explored, in-plant compression of the syngas and compression of the hydrogen at the plant exit. It is shown that whereas in-plant compression using centrifugal machines is practical, this is not a solution when compressing hydrogen at the plant exit. This is because of the low molecular weight of the hydrogen. It is also shown that if centrifugal compressors are to be used in a pipeline system, pressure drops will need to be restricted as even an advanced two-stage centrifugal compressor will be limited to a pressure ratio of 1.2. High strength steels are suitable for the in-plant compressor, but aluminium alloy will be required for a hydrogen pipeline compressor.


Sign in / Sign up

Export Citation Format

Share Document