Q-H characteristics for heavy crude oil pipeline

Author(s):  
Сергей Евгеньевич Кутуков ◽  
Ольга Витальевна Четверткова ◽  
Андрей Иванович Гольянов

Проблема повышения точности технологических расчетов нефтепроводов обрела особую остроту на фоне модернизации системы обнаружения утечек и разработки программного обеспечения в области планирования грузопотоков в системе магистральных трубопроводов. Расхождение результатов гидравлических расчетов и фактических параметров перекачки вызвано, в частности, такими факторами, как игнорирование мультифазного характера течения нефти (особенно на недогруженных участках нефтепроводов, проложенных по пересеченной местности), отсутствие актуальных данных по состоянию длительно эксплуатируемых труб, применение методик расчета потерь энергии на трение, базирующихся на постулатах классической гидравлики. В настоящей статье авторами предложен метод определения гидравлической характеристики трубопровода на установившемся режиме эксплуатации, перекачивающего неньютоновские реологически сложные нефти в диапазоне малых скоростей сдвига, который предполагает непосредственную интерпретацию экспериментальных данных вискозиметрии и исключает погрешности аппроксимации кривой течения реологической моделью и осреднения параметра вязкости. С этой целью рассмотрены вопросы аномалии вязкости и тиксотропии неньютоновских нефтей. Дано обоснование предлагаемого метода и представлено практическое приложение излагаемой методики на примере анализа гидравлической характеристики магистрального нефтепровода Атырау-Самара, по которому транспортируется смесь нефтей с частично разрушенной внутренней структурой. The problem of improving the accuracy of technological calculations for oil pipelines has become especially acute against the background of modernization of the leak detection system and development of software in the field of planning cargo flows in the trunk pipeline system. Discrepancy between hydraulic calculation results and actual pumping parameters is caused, in particular, by such factors as ignoring the multiphase oil flow nature (especially in under-loaded sections of oil pipelines laid over rough terrain), the lack of up-to-date data on the state of long-operating pipes, the use of methods for calculating friction-related energy losses based on the postulates of classical hydraulics. In this article, the authors propose a method for determining the hydraulic characteristics of a pipeline at steady state operation, pumping non-Newtonian rheologically complex oils in the range of low shear rates, which implies a direct interpretation of experimental viscometry data, excluding errors in approximating the flow curve by a rheological model and averaging the viscosity parameter. For this purpose, the anomaly of viscosity and thixotropy of non-Newtonian oils are considered. The article provides a substantiation of the proposed method and presents a practical application of the described technique by the example of the analysis of the hydraulic characteristics of the Atyrau-Samara main oil pipeline, through which an oil blend with partially destroyed internal structure is transported.

Author(s):  
Марат Замирович Ямилев ◽  
Азат Маратович Масагутов ◽  
Александр Константинович Николаев ◽  
Владимир Викторович Пшенин ◽  
Наталья Алексеевна Зарипова ◽  
...  

Теплогидравлический расчет неизотермических трубопроводов является наиболее важным гидравлическим расчетом в рамках решения задач обеспечения надежности и безопасности работы нефтепроводной системы. Для практических расчетов применяются формулы Дарси - Вейсбаха и Лейбензона. При этом в ряде случаев (короткие теплоизолированные участки, поверхностный обогрев нефтепроводов) можно использовать упрощенный подход к расчету, пренебрегая изменением температуры или учитывая температурные поправки. В настоящее время формулы для аналитического расчета движения высоковязких нефтей в форме уравнения Лейбензона получены только для ньютоновской и вязкопластичной жидкостей. Для степенной жидкости соответствующие зависимости отсутствуют, расчет ведется с использованием формулы Дарси - Вейсбаха. Целью настоящей статьи является представление формулы Дарси - Вейсбаха для изотермических течений степенной жидкости в форме уравнения Лейбензона. Данное представление позволит упростить процедуру проведения аналитических выкладок. В результате получены модифицированные уравнения Лейбензона для определения потери напора на участке нефтепровода в диапазоне индекса течения от 0,5 до 1,25. В указанном диапазоне относительное отклонение от результатов расчетов с использованием классических формул Метцнера - Рида и Ирвина не превышает 2 %. The thermal-hydraulic calculation of non-isothermal pipelines is the most important hydraulic calculation in the framework of solving the problems of ensuring the reliability and safety of the oil pipeline system. For practical calculations, the Darcy - Weisbach and Leibenson formulas are used. Moreover, in a number of cases (short heat-insulated sections, surface heating of oil pipelines), a simplified approach to the calculation can be used, neglecting temperature changes or taking into account temperature corrections. At present, formulas for the analytical calculation of the motion of high-viscosity oils in the form of the Leibenson equation have been obtained only for Newtonian and viscoplastic fluids. For a power-law fluid, there are no corresponding dependences; the calculation is carried out using the Darcy - Weisbach formula. The purpose of this article is to present the Darcy - Weisbach formula for isothermal flows of a power-law fluid in the Leibenzon form, which will simplify the procedure for performing analytical calculations. The modified Leibenzon equations are obtained to determine the head loss in the oil pipeline section in the range of the flow index from 0.5 to 1.25. In the specified range, the relative deviation from the results of calculations using the classical Metzner - Reed and Irwin formulas does not exceed 2 %.


2020 ◽  
Vol 7 (3) ◽  
pp. 37-44
Author(s):  
KONSTANTIN NAPREENKO ◽  
◽  
ROMAN SAVELEV ◽  
ALEKSEY TROFIMOV ◽  
ANNA LAMTYUGINA ◽  
...  

The article discusses methods for determining the hydraulic resistance of units of an accident-resistant fuel system. A detailed description of the need to create such fuel systems for modern helicopters is given. The development of such systems today is impossible without the use of the method of mathematical modeling, which allows to qualitatively solve problems arising in the design process. To obtain accurate research results, it is necessary to have a complete description of all elements and assemblies of the system. Methods for determining the hydraulic characteristics of AFS elements using the drag coefficient, reference literature and CFD codes are considered. As the investigated AFS units, a drain valve and burst fitting were studied in the article. A hydraulic calculation of these AFS elements ware performed, the simulation results are presented in the ANSYS CFX software package. Also as the calculation results of bursting fitting, the pressure distribution fields of full and static pressure, velocity and streamlines are also shown. An experimental setup for validating the results obtained using the mathematical modeling method is considered, as well as a methodology for conducting a full-scale experiment to determine the hydraulic resistance of the unit. Materials have been prepared for inclusion in a one-dimensional mathematical model of an accident-resistant fuel system.


Author(s):  
Travis Mecham ◽  
Galen Stanley ◽  
Michael Pelletier ◽  
Jim C. P. Liou

Recent advances in SCADA and leak detection system technologies lead to higher scan rates and faster model speeds. As these model speeds increase and the inherent mathematical uncertainties in implicit method solutions are reduced, errors and uncertainties in measurement of the physical properties of the fluids transported by pipeline come to dominate the confidence calculations for computer generated leak alerts in the control center. The ability to collect more data must be supported by the need for better model data in order to achieve optimal leak detection system performance. This is particularly true when the products transported are non-homogeneous and have strong viscosity-vs-temperature relationships. These are characteristics of crude oils in California’s San Joaquin Valley where significant heating is required to pump these oils in an efficient manner. Proper characterization and correct mathematical expression of these physical properties in leak models has become critical. This paper presents these new developments in the context of an implementation of this new technology for the Pacific Pipeline System (PPS). PPS is a recently constructed and commissioned 209 km (130-mile), 50.8 cm (20″) diameter, insulated, hot crude oil pipeline between the southern portion of California’s San Joaquin Valley and refineries in the Los Angeles basin. Operational temperatures in this line vary from ambient to 82.2°C (180°F) with pressures ranging from 345 kPa (50 psi) to 11,720 kPa (1700 psi). Due to the unique geometry of the line, facilities along the route include pumping stations, metering stations and numerous “throttle-type” pressure reduction facilities. On PPS, a high-speed leak detection model is supported by a fiber optic (OC-1) communication backbone with data rate capacities in excess of 50 Megabits Per Second (MPS). Total scan times for the distributed communication system have been reduced to 1/4 second — each facility reports data to the SCADA host four times each second. A corresponding 1/4 second leak detection model cycle leads to selection of Methods of Characteristics segments on the order of 260 meters (850 feet). This resolution, in conjunction with the advanced instrumentation package of PPS, makes detection of very small leaks realizable. This paper starts with an overview of the system and combines a mix of the theoretical requirements imposed by the mathematical solutions with a practical description of the laboratory procedures and propagated experimental errors. The paper reviews temperature-related errors and uncertainties and their influence on leak detection performance.


Author(s):  
Obioma Helen Onyi-Ogelle

Pipelines have been recognized to be one of the most effective means of transportation in any oil producing state. It however has its technicalities, hence the provision of regulations and guidelines for their operation. Nigeria as an oil producing state has been operating with pipelines for many years now, but in all ramifications it has not had the best and efficient oil pipeline system. This research work was as a result of the failure of the Oil Pipelines Act and its subsidiary Regulation, Guidelines and Procedure for the Construction, Operation and Maintenance of Oil and Gas Pipelines and their Ancillary Facilities, to create for an effective pipeline operation. This research applied a doctrinal type of methodology and adopted an analytical, comparative and descriptive approach. It was found that the problem with the Nigerian Oil Pipelines Act, is that it is outdated. The Act has been in existence for more than 50 years; and because of this, it cannot meet the current needs and trends in the country. Some of the needs are: meeting up with Technological Advancements, Managerial and maintenance skills, Environmental Protection, Efficiency in transportation and Security issues. More importantly it cannot take care of the current exigenecies in the country with regard to transportation of oil. This research has offered some recommendations to improve the oil pipeline system. Some of which includes a proper creation for an effective monitoring system. This should be done by qualified personnel and also with the use of advanced technology obtainable in some countries like the US. This advanced technological monitoring system will not only report any vandalization, but will also indicate when there is need for maintenance especially pipeline corrosion. There should be more creation of oil and gas pipelines in all the cities to discourage transportation of petroleum products through tanker which over the years have been the cause of so many road accidents and fire outbreaks. There should be an improvement on the types of pipelines operated; this should include new age pipelines. These problems associated with the Oil Pipelines Act necessitated the call for its amendment.


Author(s):  
Rainer Beushausen ◽  
Stefan Tornow ◽  
Harald Borchers ◽  
Keefe Murphy ◽  
Jun Zhang

This paper addresses the specific issues of transient leak detection in crude oil pipelines. When a leak occurs immediately after pumps are switched on or off, the pressure wave generated by the transients dominates the pressure wave that results from the leak. Traditional methods have failed to detect such leaks. Over the years, NWO has developed and implemented various leak detection systems both in-house and by commercial vendors. These systems work effectively under steady-state conditions but they are not able to detect leaks during transients. As it is likely for a leak to develop during transients, NWO has decided to have the ATMOS Pipe statistical leak detection system installed on their pipelines. This paper describes the application of this statistical system to two crude oil pipeline systems. After addressing the main difficulties of transient leaks, the field results will be presented for both steady-state and transient conditions.


Author(s):  
Y. V. Yakymiv ◽  
O. M. Bortnyak

Modern oil transportation systems are characterized by a complex hydraulic structure and geometric configuration, and often require the need for a permanent or periodic pumping or dumping part of the oil flow. The implementation of such transportation technology necessarily leads to changes in the operating conditions of oil pipelines and in accordance with the need to regulate the operation of oil pumping stations. Consequently, determining the patterns of the impact of the process of dumping the part of the oil on the energy parameters of the operation of oil transportation systems is an extremely important task.The influence of periodic dumping the part of oil on the energy efficiency of the operation of main oil pipelines was studied. The impact of volume of discharges on the consumption of power on pumping oil in the system of the main oil pipeline was analyzed. It has been found that with the increase the volume of discharges, the specific consumption of electricity for oil pumping decreases.Based on the carried research, the recommendations on the selection of reliable, safe and optimal pumping modes in terms of cost of electricity for the operation of oil pipelines "Druzhba" in the direction of Mozyr - Brody - Tukholsky pass with periodical partial oil dumping on LPDS "Brody".


Author(s):  
Xiaomei Wang ◽  
Guoqun Chen ◽  
Lei Shi ◽  
Zheng Zhang ◽  
Zihua Zhao ◽  
...  

To ensure the safety of heated waxy crude oil pipeline with in-line rehabilitation, the allowable exposed length and the impending length of the pipe will be respectively determined by using the thermal and hydraulic calculation method for buried heated crude pipeline and Safety Assessment for In-service Pressure Vessels with Defects. In addition, with the elastic foundation beam model, safety measures of backfilling with sand compacted are proposed based on the calculation of the pipe bending stress distribution after backfilling. In this research, a software package has been developed to compute the reasonable exposed length and the impending length of the pipeline in any position and operating condition. The obtained results with comprehensive considering most of key factors are reliable and reasonable which brings the advantages of safety and economy. The technical parameters and manuals obtained have been successfully applied to guide the in-line rehabilitation of China’s Northeast pipeline system.


2019 ◽  
Vol 97 ◽  
pp. 05003
Author(s):  
Vladimir Orlov ◽  
Sergey Zotkin

The article presents the aspects concerning the preservation of the transporting capacity of the waste water flow in the gravity pipeline during its trenchless renovation by polymer pipes. It is shown that the priority measure to preserve the required degree of self-cleaning of the restored pipeline section, as well as these ones adjacent to it, are the values of the water flow rate and filling in the pipe, which allows to provide the necessary transportation capacity of the entire pipeline system. A formula for determining the length of the rate destabilization zone is proposed and the calculation results using an automated program are given. The program algorithm includes the functions to determine the hydraulic friction coefficients of the pipeline material depending on various parameters, as well as the diameters and lengths of all sections. The essence of the calculations using an automated complex is described and the comparison of the calculation results under different conditions is made. There are given practical recommendations for the potential achievement of the hydraulic balance in the pipeline system and the creation of conditions under which the destabilization zone on the site after the repair becomes minimal.


Author(s):  
V. Т. Bolonnyi

The characteristics of Ukrainian oil transportation system are presented; the emergency risks of Ukrainian oil pipelines are established. The analysis of the accident rate of oil pipeline transportation in Ukraine, Russia and the USA was carried out. The processes of initiation and progression of man-made emergencies in Ukraine during the oil pipelines operation are considered. The article presents the technique of specifying the incidental pressure in a pipeline, depending on the amount of oil loss at the site of oil leaks. It gives an opportunity to calculate the amount of oil loss and to evaluate the environmental hazards caused by oil pipeline transportation emergencies.  It is based on the equations of motion and continuity of fluid flow. This technique makes it possible to calculate the pressure at each point of a pipeline in transient mode caused by changes in pressure at the beginning and at the end of the section and the emergence of concentrated oil offtake. It also gives an opportunity to monitor the change in mode parameters along the pipeline under conditions of pipeline depressurization. Maximum discrepancy in calculation results becomes typical when the range of fluctuations is maximal. It has been established that discrepancy increases when the distance from the source of perturbation becomes bigger. The discrepancy in calculation results is practically non-existent for the pressure fluctuations at the point of perturbation start (). Based on the results of calculations, the author constructs a graph of pressure change of the oscillatory process in the oil pipeline caused by the jump in the pressure at the beginning and at the end of the section, and the presence of probable leaks at the certain point of the pipeline route. The line section of the main oil pipelines is the most dangerous part since all emergencies are associated with emergency processes of different intensity in the form of outflow of oil into the environment, and are dangerous because of system breakdowns can take place. Both the process of the generation of the oil pollution zone and its time period depend on the amount of oil leakage, its intensity and depth of the oil pipeline.


Author(s):  
Marat R. Lukmanov ◽  
◽  
Sergey L. Semin ◽  
Pavel V. Fedorov ◽  
◽  
...  

The challenges of increasing the energy efficiency of the economy as a whole and of certain production sectors in particular are a priority both in our country and abroad. As part of the energy policy of the Russian Federation to reduce the specific energy intensity of enterprises in the oil transportation system, Transneft PJSC developed and implements the energy saving and energy efficiency improvement Program. The application of energy-saving technologies allowed the company to significantly reduce operating costs and emissions of harmful substances. At the same time, further reduction of energy costs is complicated for objective reasons. The objective of this article is to present additional methods to improve the energy efficiency of oil transportation by the example of the organizational structure of Transneft. Possibilities to reduce energy costs in the organization of the operating services, planning and execution of work to eliminate defects and preparatory work for the scheduled shutdown of the pipeline, the use of pumping equipment, including pumps with variable speed drive, the use of various pipelines layouts, changing the volume of oil entering the pipeline system and increase its viscosity.


Sign in / Sign up

Export Citation Format

Share Document