Safety Assurance of the Heated Waxy Oil Pipeline in Repair

Author(s):  
Xiaomei Wang ◽  
Guoqun Chen ◽  
Lei Shi ◽  
Zheng Zhang ◽  
Zihua Zhao ◽  
...  

To ensure the safety of heated waxy crude oil pipeline with in-line rehabilitation, the allowable exposed length and the impending length of the pipe will be respectively determined by using the thermal and hydraulic calculation method for buried heated crude pipeline and Safety Assessment for In-service Pressure Vessels with Defects. In addition, with the elastic foundation beam model, safety measures of backfilling with sand compacted are proposed based on the calculation of the pipe bending stress distribution after backfilling. In this research, a software package has been developed to compute the reasonable exposed length and the impending length of the pipeline in any position and operating condition. The obtained results with comprehensive considering most of key factors are reliable and reasonable which brings the advantages of safety and economy. The technical parameters and manuals obtained have been successfully applied to guide the in-line rehabilitation of China’s Northeast pipeline system.

Author(s):  
Марат Замирович Ямилев ◽  
Азат Маратович Масагутов ◽  
Александр Константинович Николаев ◽  
Владимир Викторович Пшенин ◽  
Наталья Алексеевна Зарипова ◽  
...  

Теплогидравлический расчет неизотермических трубопроводов является наиболее важным гидравлическим расчетом в рамках решения задач обеспечения надежности и безопасности работы нефтепроводной системы. Для практических расчетов применяются формулы Дарси - Вейсбаха и Лейбензона. При этом в ряде случаев (короткие теплоизолированные участки, поверхностный обогрев нефтепроводов) можно использовать упрощенный подход к расчету, пренебрегая изменением температуры или учитывая температурные поправки. В настоящее время формулы для аналитического расчета движения высоковязких нефтей в форме уравнения Лейбензона получены только для ньютоновской и вязкопластичной жидкостей. Для степенной жидкости соответствующие зависимости отсутствуют, расчет ведется с использованием формулы Дарси - Вейсбаха. Целью настоящей статьи является представление формулы Дарси - Вейсбаха для изотермических течений степенной жидкости в форме уравнения Лейбензона. Данное представление позволит упростить процедуру проведения аналитических выкладок. В результате получены модифицированные уравнения Лейбензона для определения потери напора на участке нефтепровода в диапазоне индекса течения от 0,5 до 1,25. В указанном диапазоне относительное отклонение от результатов расчетов с использованием классических формул Метцнера - Рида и Ирвина не превышает 2 %. The thermal-hydraulic calculation of non-isothermal pipelines is the most important hydraulic calculation in the framework of solving the problems of ensuring the reliability and safety of the oil pipeline system. For practical calculations, the Darcy - Weisbach and Leibenson formulas are used. Moreover, in a number of cases (short heat-insulated sections, surface heating of oil pipelines), a simplified approach to the calculation can be used, neglecting temperature changes or taking into account temperature corrections. At present, formulas for the analytical calculation of the motion of high-viscosity oils in the form of the Leibenson equation have been obtained only for Newtonian and viscoplastic fluids. For a power-law fluid, there are no corresponding dependences; the calculation is carried out using the Darcy - Weisbach formula. The purpose of this article is to present the Darcy - Weisbach formula for isothermal flows of a power-law fluid in the Leibenzon form, which will simplify the procedure for performing analytical calculations. The modified Leibenzon equations are obtained to determine the head loss in the oil pipeline section in the range of the flow index from 0.5 to 1.25. In the specified range, the relative deviation from the results of calculations using the classical Metzner - Reed and Irwin formulas does not exceed 2 %.


Author(s):  
Сергей Евгеньевич Кутуков ◽  
Ольга Витальевна Четверткова ◽  
Андрей Иванович Гольянов

Проблема повышения точности технологических расчетов нефтепроводов обрела особую остроту на фоне модернизации системы обнаружения утечек и разработки программного обеспечения в области планирования грузопотоков в системе магистральных трубопроводов. Расхождение результатов гидравлических расчетов и фактических параметров перекачки вызвано, в частности, такими факторами, как игнорирование мультифазного характера течения нефти (особенно на недогруженных участках нефтепроводов, проложенных по пересеченной местности), отсутствие актуальных данных по состоянию длительно эксплуатируемых труб, применение методик расчета потерь энергии на трение, базирующихся на постулатах классической гидравлики. В настоящей статье авторами предложен метод определения гидравлической характеристики трубопровода на установившемся режиме эксплуатации, перекачивающего неньютоновские реологически сложные нефти в диапазоне малых скоростей сдвига, который предполагает непосредственную интерпретацию экспериментальных данных вискозиметрии и исключает погрешности аппроксимации кривой течения реологической моделью и осреднения параметра вязкости. С этой целью рассмотрены вопросы аномалии вязкости и тиксотропии неньютоновских нефтей. Дано обоснование предлагаемого метода и представлено практическое приложение излагаемой методики на примере анализа гидравлической характеристики магистрального нефтепровода Атырау-Самара, по которому транспортируется смесь нефтей с частично разрушенной внутренней структурой. The problem of improving the accuracy of technological calculations for oil pipelines has become especially acute against the background of modernization of the leak detection system and development of software in the field of planning cargo flows in the trunk pipeline system. Discrepancy between hydraulic calculation results and actual pumping parameters is caused, in particular, by such factors as ignoring the multiphase oil flow nature (especially in under-loaded sections of oil pipelines laid over rough terrain), the lack of up-to-date data on the state of long-operating pipes, the use of methods for calculating friction-related energy losses based on the postulates of classical hydraulics. In this article, the authors propose a method for determining the hydraulic characteristics of a pipeline at steady state operation, pumping non-Newtonian rheologically complex oils in the range of low shear rates, which implies a direct interpretation of experimental viscometry data, excluding errors in approximating the flow curve by a rheological model and averaging the viscosity parameter. For this purpose, the anomaly of viscosity and thixotropy of non-Newtonian oils are considered. The article provides a substantiation of the proposed method and presents a practical application of the described technique by the example of the analysis of the hydraulic characteristics of the Atyrau-Samara main oil pipeline, through which an oil blend with partially destroyed internal structure is transported.


Author(s):  
Marat R. Lukmanov ◽  
◽  
Sergey L. Semin ◽  
Pavel V. Fedorov ◽  
◽  
...  

The challenges of increasing the energy efficiency of the economy as a whole and of certain production sectors in particular are a priority both in our country and abroad. As part of the energy policy of the Russian Federation to reduce the specific energy intensity of enterprises in the oil transportation system, Transneft PJSC developed and implements the energy saving and energy efficiency improvement Program. The application of energy-saving technologies allowed the company to significantly reduce operating costs and emissions of harmful substances. At the same time, further reduction of energy costs is complicated for objective reasons. The objective of this article is to present additional methods to improve the energy efficiency of oil transportation by the example of the organizational structure of Transneft. Possibilities to reduce energy costs in the organization of the operating services, planning and execution of work to eliminate defects and preparatory work for the scheduled shutdown of the pipeline, the use of pumping equipment, including pumps with variable speed drive, the use of various pipelines layouts, changing the volume of oil entering the pipeline system and increase its viscosity.


Author(s):  
Guillaume Vinay ◽  
Petrus Tri Bhaskoro ◽  
Isabelle Hénaut ◽  
Mior Zaiga Sariman ◽  
Astriyana Anuar ◽  
...  

Author(s):  
Carlos A. Garcia ◽  
Esteban X. Castellanos ◽  
Jorge Buele ◽  
John Espinoza ◽  
David Lanas ◽  
...  

Author(s):  
W. G. Tonkins ◽  
U. J. Baskurt ◽  
James D. Hart

During the summer of 1996, the TransAlaska Pipeline System (TAPS) experienced pipe vibrations near Thompson Pass, which is located 25 miles north of the Valdez Marine Terminal (VMT). The VMT is the southern terminus of the 48-inch oil pipeline transporting Alaska North Slope Crude for further shipment to market via marine tankers. The pipeline is designed to operate in a slackline mode as it flows over the 2,810 ft. elevation of Thompson Pass. As a result of the slackline experience gained at Thompson Pass, Alyeska evaluated other areas along TAPS where continuous slackline operation either existed in the past or could exist in the future with declining pipeline throughputs. A study determined that other locations along the pipeline could operate in a continuous slackline mode and should be investigated for potential slackline operating problems. This paper describes the slackline testing and evaluation and methods developed by Alyeska to control problems caused by slackline operation. General evaluations and observations of the slackline dynamics phenomena that can cause pipe vibrations along with guidelines and recommendations for the control or elimination of slackline vibration problems are presented.


2014 ◽  
Vol 6 ◽  
pp. 894256
Author(s):  
Jian Zhang ◽  
Yi Wang ◽  
Xinran Wang ◽  
Handu Dong ◽  
Jinping Huang ◽  
...  

A mathematical model is established for the preheating commissioning process of waxy crude oil pipelines. The governing equations are solved by the finite volume method and the finite difference method. Accordingly, numerical computations are made for the Niger crude oil pipeline and the Daqing-Tieling 3rd pipeline. The computational results agree well with the field test data. On this basis, fluid temperature in the process of the preheating commissioning is studied for single station-to-station pipeline. By comparing different preheating modes, it is found that the effect of forward preheating is the best. Under different preheating commissioning conditions, the optimal combination of outlet temperature and flow rate is given.


Sign in / Sign up

Export Citation Format

Share Document