Pneumatic resistance network analysis and dimension optimization of high pressure electronic pneumatic pressure reducing valve

2011 ◽  
Vol 18 (3) ◽  
pp. 666-671 ◽  
Author(s):  
Zhi-peng Xu ◽  
Xuan-yin Wang
Author(s):  
Xu Zhipeng ◽  
Wang Xuanyin

Pressure reducing valve (PRV) is one of the critical components in high pressure pneumatic systems. Nowadays, manually operated PRVs have been widely used, but there is still no universal electronic PRV. Thus, we proposed a novel high pressure electronic pneumatic pressure reducing valve (EPPRV) whose inlet pressure (pi) is up to 31.5 MPa. The EPPRV mainly consists of a poppet structured pilot valve and a piston structured main valve. A proportional electromagnet was used as the command element, and a pressure closed loop, rather than a force closed loop controller, was designed. First, the mechanical design and functionality of the EPPRV are carefully analyzed. Then, a mathematical model is built up, and the working characteristics of pressure, flow rate, and frequency response are simulated. Finally, the test bench is introduced, and detailed experiments are carried out. Simulated and experimental results are highly consistent within output pressure (po) ranging from 8 MPa to 25 MPa and load flow rate (qld) ranging from 60 g/s to 650 g/s, which verifies the feasibility of the novel structure and the validity of the mathematic model.


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 49-56 ◽  
Author(s):  
A. M. Lepikhin ◽  
V. V. Moskvichev ◽  
A. E. Burov ◽  
E. V. Aniskovich ◽  
A. P. Cherniaev ◽  
...  

The results of unique experimental studies of the strength and service life of a metal-composite high-pressure tank are presented. The goal of the study is to analyze the fracture mechanisms and evaluate the strength characteristics of the structure. The methodology included tests of full-scale samples of the tank for durability under short-term static, long-term static and cyclic loading with internal pneumatic pressure. Generalized test results and data of visual measurements, instrumental and acoustic-emission control of deformation processes, accumulation of damages and destruction of full-scale tank samples are presented. Analysis of the strength and stiffness of the structure exposed to internal pneumatic pressure is presented. The types of limiting states of the tanks have been established experimentally. Change in the stress-strain state of the tank under cyclic and prolonged static loading is considered. Specific features of the mechanisms of destruction of a metal-composite tank are determined taking into account the role of strain of the metal liner. The calculated and experimental estimates of the energy potential of destruction and the size of the area affected upon destruction of the tank are presented. Analysis of test results showed that the tank has high strength and resource characteristics that meet the requirements of the design documentation. The results of the experiments are in good agreement with the results of numerical calculations and analysis of the stress-strain state and mechanisms of destruction of the metal-composite tank.


2019 ◽  
Vol 21 (3) ◽  
pp. 203
Author(s):  
Adindra Vickar Ega ◽  
R.Rudi Anggoro Samodro

<p>To provide calibration services for pressure measuring devices, SNSU-BSN has several piston-cylinder standard that may traceable to different National Metrology Institute (NMIs). Non-full range calibration of pressure balance has been performed to evaluate the consistency of calibration results between those standard, especially for establishing self-traceability in the future. In this research, a piston-cylinder unit S/N 1926 with medium pressure range of 1750 kPa, was calibrated with low pressure range S/N 978 of 350 kPa and high pressure range S/N 1054 of 7000 kPa. The calibration was performed with cross-float method to evaluate the effective area of piston-cylinder at null pressure and reference temperature of 20⁰C (<em>A<sub>0,20</sub></em>) and distortion coefficient (λ) as the 1926 main parameters. The obtained value, respectively are (1.961 166 × 10<sup>-4</sup> ± 4.4 × 10<sup>-9</sup>) m<sup>2 </sup>and (-1.67 × 10<sup>-12</sup> ± 9.4 × 10<sup>-13</sup>) Pa<sup>-1 </sup>from 978 and (1.961166 × 10<sup>-4</sup> ± 5.1 × 10<sup>-9</sup>) m<sup>2</sup> and (-1.58 × 10<sup>-12</sup> ± 8.4 × 10<sup>-13</sup>) Pa<sup>-1 </sup>from 1054. The result of 1926 from both methods shows good conformity with Normalized Error (En) of 0.0007 and 0.069, respectively. Linearity of effective area changes to the pressure is very consistent in both low and high pressure range. Validation results by using PTB-Germany results, shows the relative different for <em>A<sub>0</sub></em> and <em>λ</em> obtained are less than 0,1 × 10<sup>-6</sup> and 6%,respectively. Therefore, the pneumatic pressure balance of SNSU-BSN is traceable, consistent with each other and capable for disseminating the pressure unit along all primary pressure standard owned with high agreement compared to those of other advance NMIs.</p>


2017 ◽  
Vol 110 ◽  
pp. 753-767 ◽  
Author(s):  
Fu-qiang Chen ◽  
Ming Zhang ◽  
Jin-yuan Qian ◽  
Yang Fei ◽  
Li-long Chen ◽  
...  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dunqian Cao ◽  
Xue Zhang ◽  
Haoran Xue ◽  
Conglin Xu

High-pressure fuel line is a basic component of many modern industrial devices, and its pressure stability affects operating efficiency and safety. In this paper, the working mechanism of high-pressure fuel line with double fuel injectors and pressure reducing valve is studied as the main object, the differential equation for changes in pressure with time is established, and the rotating speed of high-pressure fuel pump cam, fuel injection time of fuel injector, and the threshold of pressure reducing valve are optimized using fuzzy logic systems to control the pressure in high-pressure fuel line within a safe range and improve the operating efficiency and safety of high-pressure fuel line. The results of numerical simulation show that the pressure reducing valve can effectively control the pressure in high-pressure fuel line.


2013 ◽  
Vol 2013 (0) ◽  
pp. 415-416
Author(s):  
Takashi Fukue ◽  
Koichi Horose ◽  
Tomoyuki Hatakeyama ◽  
Masaru Ishizuka

Sign in / Sign up

Export Citation Format

Share Document