scholarly journals Periodic solutions for nonresonant parabolic equations on $${\mathbb {R}}^N$$ with Kato–Rellich type potentials

Author(s):  
Aleksander Ćwiszewski ◽  
Renata Łukasiak

AbstractA criterion for the existence of T-periodic solutions of nonautonomous parabolic equation $$u_t = \Delta u + V(x)u + f(t,x,u)$$ u t = Δ u + V ( x ) u + f ( t , x , u ) , $$x\in {\mathbb {R}}^N$$ x ∈ R N , $$t>0$$ t > 0 , where V is Kato–Rellich type potential and f diminishes at infinity, will be provided. It is proved that, under the nonresonance assumption, i.e. $${\mathrm {Ker}} (\Delta + V)=\{0\}$$ Ker ( Δ + V ) = { 0 } , the equation admits a T-periodic solution. Moreover, in case there is a trivial branch of solutions, i.e. $$f(t,x,0)=0$$ f ( t , x , 0 ) = 0 , there exists a nontrivial solution provided the total multiplicities of positive eigenvalues of $$\Delta +V$$ Δ + V and $$\Delta + V + f_0$$ Δ + V + f 0 , where $$f_0$$ f 0 is the partial derivative $$f_u(\cdot ,\cdot ,0)$$ f u ( · , · , 0 ) of f, are different mod 2.

1994 ◽  
Vol 7 (4) ◽  
pp. 581-586 ◽  
Author(s):  
Janpou Nee

In this paper we show that the second-order differential solution is 𝕃2-almost periodic, provided it is 𝕃2-bounded, and the growth of the components of a non-linear function of a system of parabolic equation is bounded by any pair of con-secutive eigenvalues of the associated Dirichlet boundary value problems.


1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


2002 ◽  
Vol 7 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Mifodijus Sapagovas

Numerous and different nonlocal conditions for the solvability of parabolic equations were researched in many articles and reports. The article presented analyzes such conditions imposed, and observes that the existence and uniqueness of the solution of parabolic equation is related mainly to ”smallness” of functions, involved in nonlocal conditions. As a consequence the hypothesis has been made, stating the assumptions on functions in nonlocal conditions are related to numerical algorithms of solving parabolic equations, and not to the parabolic equation itself.


2006 ◽  
Vol 73 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Jifeng Chu ◽  
Xiaoning Lin ◽  
Daqing Jiang ◽  
Donal O'Regan ◽  
R. P. Agarwal

In this paper, we study the existence of positive periodic solutions to the equation x″ = f (t, x). It is proved that such a equation has more than one positive periodic solution when the nonlinearity changes sign. The proof relies on a fixed point theorem in cones.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150147
Author(s):  
Yo Horikawa

The bifurcations and chaos in a system of two coupled sigmoidal neurons with periodic input are revisited. The system has no self-coupling and no inherent limit cycles in contrast to the previous studies and shows simple bifurcations qualitatively different from the previous results. A symmetric periodic solution generated by the periodic input underdoes a pitchfork bifurcation so that a pair of asymmetric periodic solutions is generated. A chaotic attractor is generated through a cascade of period-doubling bifurcations of the asymmetric periodic solutions. However, a symmetric periodic solution repeats saddle-node bifurcations many times and the bifurcations of periodic solutions become complicated as the output gain of neurons is increasing. Then, the analysis of border collision bifurcations is carried out by using a piecewise constant output function of neurons and a rectangular wave as periodic input. The saddle-node, the pitchfork and the period-doubling bifurcations in the coupled sigmoidal neurons are replaced by various kinds of border collision bifurcations in the coupled piecewise constant neurons. Qualitatively the same structure of the bifurcations of periodic solutions in the coupled sigmoidal neurons is derived analytically. Further, it is shown that another period-doubling route to chaos exists when the output function of neurons is asymmetric.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Masashi Misawa ◽  
Kenta Nakamura

Abstract In this article, we consider a fast diffusive type doubly nonlinear parabolic equation, called 𝑝-Sobolev type flows, and devise a new intrinsic scaling method to transform the prototype doubly nonlinear equation to the 𝑝-Sobolev type flows. As an application, we show the global existence and regularity for the 𝑝-Sobolev type flows with large data.


2019 ◽  
Vol 17 (1) ◽  
pp. 172-190 ◽  
Author(s):  
Shaowen Yao ◽  
Zhibo Cheng

Abstract This paper is devoted to the existence of a periodic solution for ϕ-Laplacian neutral differential equation as follows $$\begin{array}{} (\phi(x(t)-cx(t-\tau))')'=f(t,x(t),x'(t)). \end{array}$$ By applications of an extension of Mawhin’s continuous theorem due to Ge and Ren, we obtain that given equation has at least one periodic solution. Meanwhile, the approaches to estimate a priori bounds of periodic solutions are different from the corresponding ones of the known literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdon Atangana ◽  
Dumitru Baleanu

A kind of parabolic equation was extended to the concept of fractional calculus. The resulting equation is, however, difficult to handle analytically. Therefore, we presented the numerical solution via the explicit and the implicit schemes. We presented together the stability and convergence of this time-fractional parabolic equation with two difference schemes. The explicit and the implicit schemes in this case are stable under some conditions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Giovanni Colombo ◽  
Paolo Gidoni ◽  
Emilio Vilches

<p style='text-indent:20px;'>We study the asymptotic stability of periodic solutions for sweeping processes defined by a polyhedron with translationally moving faces. Previous results are improved by obtaining a stronger <inline-formula><tex-math id="M1">\begin{document}$ W^{1,2} $\end{document}</tex-math></inline-formula> convergence. Then we present an application to a model of crawling locomotion. Our stronger convergence allows us to prove the stabilization of the system to a running-periodic (or derivo-periodic, or relative-periodic) solution and the well-posedness of an average asymptotic velocity depending only on the gait adopted by the crawler. Finally, we discuss some examples of finite-time versus asymptotic-only convergence.</p>


Author(s):  
R. Suzuki

Non-negative post-blow-up solutions of the quasilinear degenerate parabolic equation in RN (or a bounded domain with Dirichlet boundary condition) are studied. Various sufficient conditions for complete blow-up of solutions are given.


Sign in / Sign up

Export Citation Format

Share Document