Power-law shear-thinning flow around a heated square bluff body under aiding buoyancy at low Reynolds numbers

2014 ◽  
Vol 31 (5) ◽  
pp. 754-771 ◽  
Author(s):  
Neha Sharma ◽  
Amit Dhiman ◽  
Surendra Kumar
Soft Matter ◽  
2021 ◽  
Author(s):  
Ke Qin ◽  
Zhiwei Peng ◽  
Ye Chen ◽  
Herve Nganguia ◽  
Lailai Zhu ◽  
...  

Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion have been extensively studied with...


1995 ◽  
Vol 284 ◽  
pp. 217-224 ◽  
Author(s):  
Owen M. Griffin

Green & Gerrard (1993) have presented in a recent paper the results of experiments to measure the distribution of vorticity in the near wake of a circular cylinder at low Reynolds numbers (up to Re = 220). They also compared the various definitions of the vortex formation region length which have been proposed by Gerrard (1966), Griffin (1974), and others for both high and low Reynolds numbers. The purpose of this note is to expand the work of Green & Gerrard, and to further their proposition that the end of the vortex formation region at all Reynolds numbers mark both the initial position of the fully shed vortex and the location at which its strength is a maximum. The agreement discussed here between several definitions for the formation region length will allow further understanding to be gained from investigations of the vortex wakes of stationary bluff bodies, and the wakes of oscillating bodies as well.


1993 ◽  
Vol 246 ◽  
pp. 675-691 ◽  
Author(s):  
R. B. Green ◽  
J. H. Gerrard

The technique of the particle streak method has been applied to the study of bluff-body wakes at low Reynolds number. Vorticity and shear stress were measured to an accuracy of 15–20%. The vortex shedding cycles at Reynolds number of 73 and 226 are shown and the differences between the two are highlighted. Quantitative descriptions of the previously described vortex splitting phenomenon in the near wake are made, which leads to a description of the vortex shedding mechanism at low Reynolds number. The definition of low-Reynolds-number formation region length is examined. The strength of shed vortices obtained from integration of the vorticity is compared with directly measured vortex strengths and with the results of two-dimensional numerical analysis.


Sign in / Sign up

Export Citation Format

Share Document