scholarly journals Comparison of floral traits in Calibrachoa cultivars and assessment of their impacts on attractiveness to flower-visiting insects

Author(s):  
Melanie Marquardt ◽  
Lydia Kienbaum ◽  
Dominik Losert ◽  
Lea Annina Kretschmer ◽  
Marina Rigling ◽  
...  

AbstractOrnamental plants are appreciated by humans for their colorfulness, beauty, abundant flowering and long blooming periods. Many ornamental plants can also constitute an additional foraging resource for flower-visiting insects. However, the ability of the popular ornamental plant Calibrachoa to support urban insect communities is not well documented. In this study, 20 different Calibrachoa cultivars were selected and tested in regard to their insect friendliness based on standardized observations (I) in flight tents using the large earth bumble bee Bombus terrestris as a model species and (II) in open field trials. To investigate what floral characteristics might constitute attractiveness to bumble bees, various floral traits were recorded and compared across all tested Calibrachoa cultivars. Over a two-year period, a total of 6,327 foraging bumble bees were recorded in the tent observations. In the open field observations, we counted 4,188 flower-visiting insects. Our results revealed that (I) all Calibrachoa cultivars were visited by insects for foraging, (II) the number of insect visitors varied significantly among the 20 tested cultivars and (III) the cultivars displayed different floral traits. For the morphometric floral traits and the aroma profiles of Calibrachoa, only the mean nectar quantity and a few identified compounds could be correlated with attractiveness to the model species B. terrestris. We also found that the petal color of the tested cultivars had a significant impact on the number of visitors. Therefore, B. terrestris clearly preferred red or blue Calibrachoa cultivars over those with other petal colors. However, as the cultivar preferences in the different insect groups differed, it is highly recommended to use various cultivars in urban plantings. Nevertheless, efforts must be made to explain what additional floral traits make Calibrachoa and other ornamental plants generally attractive to flower visitors. This information can then be used for breeding purposes to increase the insect friendliness of ornamental plants.

2021 ◽  
Vol 12 ◽  
Author(s):  
Victoria Ruiz-Hernández ◽  
Lize Joubert ◽  
Amador Rodríguez-Gómez ◽  
Silvia Artuso ◽  
Jonathan G. Pattrick ◽  
...  

Studies on the selection of floral traits usually consider pollinators and sometimes herbivores. However, humans also exert selection on floral traits of ornamental plants. We compared the preferences of bumblebees (Bombus terrestris), thrips (Frankliniella occidentalis), and humans for flowers of snapdragon. From a cross of two species, Antirrhinum majus and Antirrhinum linkianum, we selected four Recombinant Inbred Lines (RILs). We characterised scent emission from whole flowers and stamens, pollen content and viability, trichome density, floral shape, size and colour of floral parts. We tested the preferences of bumblebees, thrips, and humans for whole flowers, floral scent bouquets, stamen scent, and individual scent compounds. Humans and bumblebees showed preferences for parental species, whereas thrips preferred RILs. Colour and floral scent, in combination with other floral traits, seem relevant phenotypes for all organisms. Remarkably, visual traits override scent cues for bumblebees, although, scent is an important trait when bumblebees cannot see the flowers, and methyl benzoate was identified as a key attractant for them. The evolutionary trajectory of flowers is the result of multiple floral traits interacting with different organisms with different habits and modes of interaction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


Botany ◽  
2010 ◽  
Vol 88 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Diana Bizecki Robson

Flower-visiting insect activity to the rare Symphyotrichum sericeum (Vent.) G.L. Nesom and the common Solidago nemoralis Ait. var. longipetiolata (Mack. & Bush) Pal. & Steyerm. was examined to detect compositional and temporal similarities. A hand pollination experiment was conducted to determine whether pollen was limiting seed set. Of the 31 insect taxa that visited these plants, Bombus bifarius Cresson was the most common visitor to both species. More insect visitors of the Halictidae and Bombyliidae were received by S. sericeum than S. nemoralis, which received more visitors of the Syrphidae and Tachinidae. The insect visitation rate was not significantly different between the two plant species. Solidago nemoralis was visited by fewer insect taxa per day than S. sericeum, but the constancy of its visitors was higher. The insect visitor composition changed over time, with B. bifarius ignoring S. sericeum plants initially, then visiting them more frequently as the number of receptive S. nemoralis capitula declined. Hand pollination increased seed set in the earliest flowering capitula of S. sericeum, but not for those flowering during the peak. This research shows that the quantity of insect visits to the rare plant is comparable with that of the common plant but that pollination quality may be lower, particularly for early blooming capitula.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 247 ◽  
Author(s):  
Nils Grund-Mueller ◽  
Fabian A. Ruedenauer ◽  
Johannes Spaethe ◽  
Sara D. Leonhardt

Dietary macro-nutrients (i.e., carbohydrates, protein, and fat) are important for bee larval development and, thus, colony health and fitness. To which extent different diets (varying in macro-nutrient composition) affect adult bees and whether they can thrive on nectar as the sole amino acid source has, however, been little investigated. We investigated how diets varying in protein concentration and overall nutrient composition affected consumption, longevity, and breeding behavior of the buff-tailed bumble bee, Bombus terrestris (Hymenoptera: Apidae). Queenless micro-colonies were fed either natural nutrient sources (pollen), nearly pure protein (i.e., the milk protein casein), or sucrose solutions with low and with high essential amino acid content in concentrations as can be found in nectar. We observed micro-colonies for 110 days. We found that longevity was highest for pure pollen and lowest for pure sucrose solution and sucrose solution supplemented with amino acids in concentrations as found in the nectar of several plant species. Adding higher concentrations of amino acids to sucrose solution did only slightly increase longevity compared to sucrose alone. Consequently, sucrose solution with the applied concentrations and proportions of amino acids or other protein sources (e.g., casein) alone did not meet the nutritional needs of healthy adult bumble bees. In fact, longevity was highest and reproduction only successful in micro-colonies fed pollen. These results indicate that, in addition to carbohydrates and protein, adult bumble bees, like larvae, need further nutrients (e.g., lipids and micro-nutrients) for their well-being. An appropriate nutritional composition seemed to be best provided by floral pollen, suggesting that pollen is an essential dietary component not only for larvae but also for adult bees.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Margaret J. Couvillon ◽  
Chandra M. Walter ◽  
Eluned M. Blows ◽  
Tomer J. Czaczkes ◽  
Karin L. Alton ◽  
...  

We quantified insect visitation rates by counting how many flowers/inflorescences were probed per unit time for five plant species (four native and one garden: California lilac, bramble, ragwort, wild marjoram, and ivy) growing in Sussex, United Kingdom, by following individual insects (n=2987) from nine functional groups (honey bees (Apis mellifera), bumble bees (Bombusspp.), hoverflies, flies, butterflies, beetles, wasps, non-Apidae bees, and moths). Additionally, we made a census of the insect diversity on the studied plant species. Overall we found that insect groups differed greatly in their rate of flower visits (P<2.2e-16), with bumble bees and honey bees visiting significantly more flowers per time (11.5 and 9.2 flowers/minute, resp.) than the other insect groups. Additionally, we report on a within-group difference in the non-Apidae bees, where the genusOsmia, which is often suggested as an alternative to honey bees as a managed pollinator, was very speedy (13.4 flowers/minute) compared to the other non-Apidae bees (4.3 flowers/minute). Our census showed that the plants attracted a range of insects, with the honey bee as the most abundant visitor (34%). Therefore, rate differences cannot be explained by particular specializations. Lastly, we discuss potential implications of our conclusions for pollination.


Author(s):  
M. Chbat ◽  
P. Goedsvang ◽  
A. Jourdan ◽  
A. Leciert ◽  
T. Olsen
Keyword(s):  

Ecotoxicology ◽  
2012 ◽  
Vol 21 (7) ◽  
pp. 1937-1945 ◽  
Author(s):  
Ian Laycock ◽  
Kate M. Lenthall ◽  
Andrew T. Barratt ◽  
James E. Cresswell

Sign in / Sign up

Export Citation Format

Share Document