The Development of High Strength and Ductility in High-Pressure Die-Cast Al-Si-Mg Alloys from Secondary Sources

JOM ◽  
2018 ◽  
Vol 71 (1) ◽  
pp. 382-390 ◽  
Author(s):  
Roger Lumley
Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2065
Author(s):  
Fei Liu ◽  
Haidong Zhao ◽  
Runsheng Yang ◽  
Fengzhen Sun

Al–Si–Mg based alloys can provide high strength and ductility to satisfy the increasing demands of thin wall castings for automotive applications. This study has investigated the effects of T6 heat-treatment on the microstructures, the local mechanical properties of alloy phases and the fracture behavior of high vacuum die-cast AlSiMgMn alloys using in-situ scanning electron microscopy (SEM) in combination with nano-indentation testing. The microstructures of the alloys at as-cast and T6 treated conditions were compared and analyzed. It is found that the T6 heat treatment plays different roles in affecting the hardness and the Young’s modulus of alloy phases. This study also found that the T6 heat treatment would influence the failure modes of the alloys. The mechanisms of crack propagation in the as-cast and T6 treated alloys were also analyzed and discussed.


2013 ◽  
Vol 376 ◽  
pp. 153-157 ◽  
Author(s):  
Jong Su Ha ◽  
Sun Ig Hong

In this study Cu-Ag or Cu-Cr layer was sandwiched by Ti and Fe plates and the three layers of Ti/Cu-8Ag/S20C were clad by High Pressure Torsioning(HPT). The effect of post-HPT heat treatment on the interfacial reaction products and the mechanical performance in Ti/Cu-Ag/S20C and Ti/Cu-Cr/S20C clad material were studied. Cu4Ti3 and Cu4Ti Intremetallic compound layers were observed at the Ti/Cu-Ag and Ti/Cu-Cr interfaces in the clad heat-treated at 500°C where as no intermetallic compounds were observed at the Cu-Ag/S20C and Cu-Cr/S20C interfaces. The strength of as-HPTed Ti/Cu-8Ag/S20C is much higher than that of Ti/Cu-1Cr/S20C. The strengthening mechanism of Cu-Ag deformed severely is the interface and strain hardening in which dislocations are deposited at the Cu/Ag interfaces and can contribute to the strengthening of the clad composite just after HPT processing, rendering the high strength just after processing. In both clad composites, the strength and ductility increased after heat treatment at 350°C, which are likely caused by the enhanced bonding at the interfaces.


2005 ◽  
Vol 488-489 ◽  
pp. 713-716 ◽  
Author(s):  
Soon Gi Lee ◽  
Gautam R. Patel ◽  
Arun M. Gokhale

The normal and inverse solute macro-segregation are known to occur in Al and other nonferrous alloy castings and have been well studied and documented. However, these phenomena have not been investigated in the high-pressure die-cast Mg-alloys. Consequently, the effects of macro-segregation on the mechanical properties of cast Mg-alloys have not been characterized. The objective of this contribution is to investigate the effects of inverse macro-segregation and porosity on the fatigue behavior of high-pressure die-cast AM60 alloy. It is observed that the inverse macro-segregation of eutectic phase at the cast surfaces adversely affects the fatigue behavior: the fatigue resistance decreases substantially due to the presence of the surface segregation.


2014 ◽  
Vol 217-218 ◽  
pp. 259-264 ◽  
Author(s):  
Pfarelo Daswa ◽  
Heinrich Möller ◽  
Madeleine du Toit ◽  
Gonasagren Govender

The 6xxx series alloys are well known for desirable combinations of high strength, weldability, corrosion resistance and formability. This paper investigates the influence of chemical composition on the solution heat treatment parameters of rheo-high pressure die cast (R-HPDC) 6xxx series aluminium alloys. The presence of copper in the 6xxx series aluminium alloys affects the solution heat treatment by promoting incipient melting. The incidence of incipient melting is investigated for the R-HPDC alloys using Differential Scanning Calorimetry (DSC) and optical microscopy. R-HPDC is known to produce surface liquid segregation and centre-line liquid segregation when processing the alloys and these areas are the most susceptible to incipient melting. The applicability of single and multiple step solution heat treatments are investigated. The alloys used for this study include the Cu-free alloy 6082, as well as the Cu-containing alloys 6013 and 6111.


2021 ◽  
pp. 111278
Author(s):  
W. Cheng ◽  
C.Y. Liu ◽  
H.F. Huang ◽  
L. Zhang ◽  
B. Zhang ◽  
...  

2010 ◽  
Vol 654-656 ◽  
pp. 1239-1242 ◽  
Author(s):  
Kaveh Edalati ◽  
Z. Horita ◽  
Hiroshi Fujiwara ◽  
Kei Ameyama ◽  
Masaki Tanaka ◽  
...  

Pure Ti powders were subjected to ball milling and subsequently high-pressure torsion (HPT) for consolidation. It is found that a fully dense (99.9%) disc with ultrafine grained structure (~50-300 nm) was produced. The strength and ductility were well comparable to those of ball-milled Ti-6%Al-4%V powders after hot roll sintering.


Author(s):  
Tracy D. Berman ◽  
Mei Li ◽  
John E. Allison
Keyword(s):  

2012 ◽  
Vol 192-193 ◽  
pp. 173-178 ◽  
Author(s):  
Heinrich Möller ◽  
Gonasagren Govender

High strength wrought Al-Cu-Mg-Ag alloy 2139 was successfully processed using the CSIR rheocasting system and cast into plates using high pressure die casting. Differential scanning calorimetry was used to determine suitable homogenization/solution treatment temperatures. A two-step homogenization/solution treatment of 490oC for 24 h, followed by 520oC for 2 h does not cause any incipient melting. Artificial aging of the R-HPDC 2139 plates at 160oC for 24 h results in tensile properties similar to those reported for thixoformed casting alloy 201-T6. The minimum military specifications for wrought 2139-T8 are exceeded in terms of strength, with slightly lower ductility being obtained. Artificial aging at 153oC for 20 h results in tensile properties that exceed all the minimum military specifications for wrought 2139-T8.


Sign in / Sign up

Export Citation Format

Share Document