Phase Transition of Waste Silicon Carbide Side Block from Aluminum Smelters During Vacuum High-Temperature Detoxification Process

JOM ◽  
2020 ◽  
Vol 72 (7) ◽  
pp. 2697-2704
Author(s):  
Mingzhuang Xie ◽  
Xinyu Guo ◽  
Wei Liu ◽  
Hongliang Zhao ◽  
Rongbin Li ◽  
...  
Alloy Digest ◽  
1994 ◽  
Vol 43 (10) ◽  

Abstract Duralcan F3S.xxS is a heat treatable aluminum alloy-matrix gravity composite. The base alloy is similar to Aluminum 359 (Alloy Digest Al-188, July 1969); the discontinuously reinforced composite is silicon carbide. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness and fatigue. It also includes information on high temperature performance. Filing Code: AL-329. Producer or source: Alcan Aluminum Corporation.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3216-3219 ◽  
Author(s):  
M. Ausloos ◽  
S. Dorbolo

A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2T c where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.


1996 ◽  
Vol 52 (a1) ◽  
pp. C364-C364
Author(s):  
J. A. Guevara ◽  
S. L. Cuffini ◽  
Y. P. Mascarenhas ◽  
P. de la Presa ◽  
A. Ayala ◽  
...  

2000 ◽  
Vol 622 ◽  
Author(s):  
Liang-Yu Chen ◽  
Gary W. Hunter ◽  
Philip G. Neudeck

ABSTRACTSingle crystal silicon carbide (SiC) has such excellent physical, chemical, and electronic properties that SiC based semiconductor electronics can operate at temperatures in excess of 600°C well beyond the high temperature limit for Si based semiconductor devices. SiC semiconductor devices have been demonstrated to be operable at temperatures as high as 600°C, but only in a probe-station environment partially because suitable packaging technology for high temperature (500°C and beyond) devices is still in development. One of the core technologies necessary for high temperature electronic packaging is semiconductor die-attach with low and stable electrical resistance. This paper discusses a low resistance die-attach method and the results of testing carried out at both room temperature and 500°C in air. A 1 mm2 SiC Schottky diode die was attached to aluminum nitride (AlN) and 96% pure alumina ceramic substrates using precious metal based thick-film material. The attached test die using this scheme survived both electronically and mechanically performance and stability tests at 500°C in oxidizing environment of air for 550 hours. The upper limit of electrical resistance of the die-attach interface estimated by forward I-V curves of an attached diode before and during heat treatment indicated stable and low attach-resistance at both room-temperature and 500°C over the entire 550 hours test period. The future durability tests are also discussed.


2010 ◽  
Vol 645-648 ◽  
pp. 1097-1100 ◽  
Author(s):  
Phillippe Godignon ◽  
Iñigo Martin ◽  
Gemma Gabriel ◽  
Rodrigo Gomez ◽  
Marcel Placidi ◽  
...  

Silicon Carbide is mainly used for power semiconductor devices fabrication. However, SiC material also offers attractive properties for other types of applications, such as high temperature sensors and biomedical devices. Micro-electrodes arrays are one of the leading biosensor applications. Semi-insulating SiC can be used to implement these devices, offering higher performances than Silicon. In addition, it can be combined with Carbon Nanotubes growth technology to improve the devices sensing performances. Other biosensors were SiC could be used are microfluidic based devices. However, improvement of SiCOI starting material is necessary to fulfill the typical requirements of such applications.


Polymer ◽  
2002 ◽  
Vol 43 (4) ◽  
pp. 1473-1481 ◽  
Author(s):  
Fangming Gu ◽  
Masamichi Hikosaka ◽  
Akihiko Toda ◽  
Swapan Kumar Ghosh ◽  
Shinichi Yamazaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document