scholarly journals X-ray Computed Tomography Studies on Porosity Distribution in Vacuum Induction Cast Al-7Si Alloys

JOM ◽  
2021 ◽  
Author(s):  
James Mathew ◽  
Mark A. Williams ◽  
Prakash Srirangam

AbstractPorosity in aluminum alloys is a great concern to the casting and automotive industry. In this publication, porosity formation in air-melted and vacuum induction melted (VIM) aluminum alloys was studied and compared to understand its effect on microstructure and mechanical properties of Al-7Si alloys. Al-7Si alloys were cast at 700°C and 900°C in a muffle furnace and VIM furnace. Microstructural results show that the alloys cast in muffle furnace refined the eutectic silicon compared with the cast samples prepared in VIM furnace. X-ray computed tomography (XCT) was used for three-dimensional (3D) visualization and quantification of porosity in these alloys. The volume fraction of pores was observed to be higher in alloy air-melted at 900°C compared with 700°C. XCT results from VIM alloy samples showed no significant porosity when cast at either 700°C or 900°C. The morphology of large pores in alloys air-melted at 700°C represents the formation of shrinkage porosity due to the incomplete flow of molten metal during solidification. Tensile test results show that the elongation property of VIM alloy was increased by more than 20% compared with air-melted alloy. The tensile strength and elongation were observed to be higher for alloy samples cast at 700°C compared with 900°C for both air-melted and VIM alloys. The findings from microstructure, XCT, and tensile tests show that vacuum induction melting improves the mechanical properties of the alloy compared with air-melted alloy.

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1154 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Fuh ◽  
Lee

Additive manufacturing (commonly known as 3D printing) is defined as a family of technologies that deposit and consolidate materials to create a 3D object as opposed to subtractive manufacturing methodologies. Fused deposition modeling (FDM), one of the most popular additive manufacturing techniques, has demonstrated extensive applications in various industries such as medical prosthetics, automotive, and aeronautics. As a thermal process, FDM may introduce internal voids and pores into the fabricated thermoplastics, giving rise to potential reduction on the mechanical properties. This paper aims to investigate the effects of the microscopic pores on the mechanical properties of material fabricated by the FDM process via experiments and micromechanical modeling. More specifically, the three-dimensional microscopic details of the internal pores, such as size, shape, density, and spatial location were quantitatively characterized by X-ray computed tomography (XCT) and, subsequently, experiments were conducted to characterize the mechanical properties of the material. Based on the microscopic details of the pores characterized by XCT, a micromechanical model was proposed to predict the mechanical properties of the material as a function of the porosity (ratio of total volume of the pores over total volume of the material). The prediction results of the mechanical properties were found to be in agreement with the experimental data as well as the existing works. The proposed micromechanical model allows the future designers to predict the elastic properties of the 3D printed material based on the porosity from XCT results. This provides a possibility of saving the experimental cost on destructive testing.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1230
Author(s):  
Fabien Léonard ◽  
Zhen Zhang ◽  
Holger Krebs ◽  
Giovanni Bruno

The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.


2014 ◽  
Vol 91 ◽  
pp. 70-78 ◽  
Author(s):  
Alberto Ortona ◽  
Ehsan Rezaei

Cellular ceramics are attracting material solutions for high temperature applications because of their outstanding properties. SiC cellular ceramics in particular withstand harsh environments at high temperatures for long operating times and are particularly resistant to thermal shock. Ceramic foams though, being random fragile structures, comprise properties which are rather scattered and difficult to engineer. This presentation shows how finite element analysis is used to study the effect of morphological features on ceramic foams in respect of their mechanical properties. Mean morphological parameters, obtained by X-ray computed tomography (XCT) on a commercially available SiSiC foam produced by the replica method, were used to generate a set of lattices in which one parameter was varied at a time. Starting from this approach, further work was then dedicated to optimize their properties. Polymeric lattices and foams, in which some characteristics were digitally modified learning from the optimization work were, produced by 3D printing and ceramized via the replica method. Both foams and lattices were then mechanically tested. Results show that some features such as strut shape and cell stretching affect the mechanical behavior of ceramic foams.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Wim-Paul Breugem ◽  
Vincent van Dijk ◽  
René Delfos

Two different direct-forcing immersed boundary methods (IBMs) were applied for the purpose of simulating slow flow through a real porous medium: the volume penalization IBM and the stress IBM. The porous medium was a random close packing of about 9000 glass beads in a round tube. The packing geometry was determined from an X-ray computed tomography (CT) scan in terms of the distribution of the truncated solid volume fraction (either 0 or 1) on a three-dimensional Cartesian grid. The scan resolution corresponded to 19.3 grid cells over the mean bead diameter. A facility was built to experimentally determine the permeability of the packing. Numerical simulations were performed for the same packing based on the CT scan data. For both IBMs the numerically determined permeability based on the Richardson extrapolation was just 10% lower than the experimentally found value. As expected, at finite grid resolution the stress IBM appeared to be the most accurate IBM.


2021 ◽  
pp. 105-113
Author(s):  
A.A. Demidov ◽  
◽  
O.A. Krupnina ◽  
N.A. Mikhaylova ◽  
E.I. Kosarina ◽  
...  

The question of the quality of samples made of polymer composite materials and its verification by x-ray computed tomography is considered. The capabilities of North Star Imaging X5000 tomograph were studied and the samples from PCM were examined for detection and evaluation of the porosity volume fraction. The factors influencing the accuracy of the estimation of the porosity volume fraction are investigated. Namely the size voxel, a filter material, quantity of projections. On the other hand, the size вокселя defines resolution of the digital image, the relation depends on a material of the applied filter a signal/noise, productivity of control worsens with growth of quantity of projections. The choice of optimum values of the listed parametres is necessary for satisfactory quality received tomographic images.


2009 ◽  
Vol 24 (2) ◽  
pp. 167-167
Author(s):  
J. Gelb ◽  
A. Tkachuk ◽  
M. Feser ◽  
H. Chang ◽  
S. Chen ◽  
...  

2009 ◽  
Vol 15 (S2) ◽  
pp. 618-619 ◽  
Author(s):  
J Gelb ◽  
M Feser ◽  
A Tkachuk ◽  
G Hsu ◽  
S Chen ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2018 ◽  
Vol 24 (1) ◽  
pp. 4
Author(s):  
Hoang Le ◽  
Cao-Son Nguyen ◽  
Anh-Hoa Bui

This paper presents experimental process of ultra-low carbon (ULC) steel using vacuum heat treatment. After adjusting the chemical compositions as desired, the ULC steel was casted into plate, hot-forged and cold-rolled to sheet of 1 mm thickness, finally annealed at 800<sup>o</sup>C. Microstructure, crystalline phase, non-metallic inclusions and mechanical properties of the ULC steels were characterized by optical microscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and tensile test. Under argon vacuum atmosphere, decarburization occurred and C contents of the treated steels were reduced to 36 and 40 ppm corresponding to the decarburizing rate of 84.2 and 82.4%, respectively. The vacuum induction melting is thought to accelerate the rate of carbon removal from liquid steel. Electromagnetic force was attributed to promote the decarburization due to increasing the mass transfer coefficient during vacuum treatment. The annealed steels obtained a good combination of the strength and ductility; the total elongations were 45.2 and 42.9 %, while the yield strengths were 199 and 285 MPa, respectively. The results indicated that the ULC steels have only ferrite phase, of which grains size were 30 µm in average. The relative volume of non-metallic inclusions in the ULC steels was calculated as 0.23 vol. %, resulting positive contribution in the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document