Characterisation of mechanical properties of cellular ceramic materials using X-Ray computed tomography

Author(s):  
O. Caty ◽  
F. Gaubert ◽  
G. Hauss ◽  
G. Chollon
Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1154 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Fuh ◽  
Lee

Additive manufacturing (commonly known as 3D printing) is defined as a family of technologies that deposit and consolidate materials to create a 3D object as opposed to subtractive manufacturing methodologies. Fused deposition modeling (FDM), one of the most popular additive manufacturing techniques, has demonstrated extensive applications in various industries such as medical prosthetics, automotive, and aeronautics. As a thermal process, FDM may introduce internal voids and pores into the fabricated thermoplastics, giving rise to potential reduction on the mechanical properties. This paper aims to investigate the effects of the microscopic pores on the mechanical properties of material fabricated by the FDM process via experiments and micromechanical modeling. More specifically, the three-dimensional microscopic details of the internal pores, such as size, shape, density, and spatial location were quantitatively characterized by X-ray computed tomography (XCT) and, subsequently, experiments were conducted to characterize the mechanical properties of the material. Based on the microscopic details of the pores characterized by XCT, a micromechanical model was proposed to predict the mechanical properties of the material as a function of the porosity (ratio of total volume of the pores over total volume of the material). The prediction results of the mechanical properties were found to be in agreement with the experimental data as well as the existing works. The proposed micromechanical model allows the future designers to predict the elastic properties of the 3D printed material based on the porosity from XCT results. This provides a possibility of saving the experimental cost on destructive testing.


2014 ◽  
Vol 91 ◽  
pp. 70-78 ◽  
Author(s):  
Alberto Ortona ◽  
Ehsan Rezaei

Cellular ceramics are attracting material solutions for high temperature applications because of their outstanding properties. SiC cellular ceramics in particular withstand harsh environments at high temperatures for long operating times and are particularly resistant to thermal shock. Ceramic foams though, being random fragile structures, comprise properties which are rather scattered and difficult to engineer. This presentation shows how finite element analysis is used to study the effect of morphological features on ceramic foams in respect of their mechanical properties. Mean morphological parameters, obtained by X-ray computed tomography (XCT) on a commercially available SiSiC foam produced by the replica method, were used to generate a set of lattices in which one parameter was varied at a time. Starting from this approach, further work was then dedicated to optimize their properties. Polymeric lattices and foams, in which some characteristics were digitally modified learning from the optimization work were, produced by 3D printing and ceramized via the replica method. Both foams and lattices were then mechanically tested. Results show that some features such as strut shape and cell stretching affect the mechanical behavior of ceramic foams.


BioResources ◽  
2012 ◽  
Vol 8 (1) ◽  
Author(s):  
Stefanie Wieland ◽  
Tilman Grünewald ◽  
Sven Ostrowski ◽  
Bernhard Plank ◽  
Gernot Standfest ◽  
...  

JOM ◽  
2021 ◽  
Author(s):  
James Mathew ◽  
Mark A. Williams ◽  
Prakash Srirangam

AbstractPorosity in aluminum alloys is a great concern to the casting and automotive industry. In this publication, porosity formation in air-melted and vacuum induction melted (VIM) aluminum alloys was studied and compared to understand its effect on microstructure and mechanical properties of Al-7Si alloys. Al-7Si alloys were cast at 700°C and 900°C in a muffle furnace and VIM furnace. Microstructural results show that the alloys cast in muffle furnace refined the eutectic silicon compared with the cast samples prepared in VIM furnace. X-ray computed tomography (XCT) was used for three-dimensional (3D) visualization and quantification of porosity in these alloys. The volume fraction of pores was observed to be higher in alloy air-melted at 900°C compared with 700°C. XCT results from VIM alloy samples showed no significant porosity when cast at either 700°C or 900°C. The morphology of large pores in alloys air-melted at 700°C represents the formation of shrinkage porosity due to the incomplete flow of molten metal during solidification. Tensile test results show that the elongation property of VIM alloy was increased by more than 20% compared with air-melted alloy. The tensile strength and elongation were observed to be higher for alloy samples cast at 700°C compared with 900°C for both air-melted and VIM alloys. The findings from microstructure, XCT, and tensile tests show that vacuum induction melting improves the mechanical properties of the alloy compared with air-melted alloy.


2021 ◽  
Vol 898 ◽  
pp. 81-86
Author(s):  
Jana Majerová ◽  
Rostislav Drochytka

It is assumed, that the pore content is related to other parameters of CIPP liners such as mechanical properties and service life or durability of pipelines. The article examines the pore structure of two different materials - composites pipes cured with steam and UV light. The pore structure was examined using an optical microscope and X-ray computed tomography (CT). The aim of the work was to verify the applicability of some methods for verifying the volume of air/gas in the cured composite.


2020 ◽  
Vol 797 ◽  
pp. 139981 ◽  
Author(s):  
Wei Liu ◽  
Chaoyue Chen ◽  
Sansan Shuai ◽  
Ruixin Zhao ◽  
Longtao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document