Antimicrobial Activity of Vanillin and Mixtures with Cinnamon and Clove Essential Oils in Controlling Listeria monocytogenes and Escherichia coli O157:H7 in Milk

2010 ◽  
Vol 5 (6) ◽  
pp. 2120-2131 ◽  
Author(s):  
Rita María Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
María Teresa Valverde-Franco ◽  
Fulgencio Marín-Iniesta
Food Control ◽  
2010 ◽  
Vol 21 (11) ◽  
pp. 1458-1465 ◽  
Author(s):  
Nadine Yossa ◽  
Jitendra Patel ◽  
Patricia Miller ◽  
Y. Martin Lo

2005 ◽  
Vol 68 (12) ◽  
pp. 2559-2566 ◽  
Author(s):  
SYLVIA GAYSINSKY ◽  
P. MICHAEL DAVIDSON ◽  
BARRY D. BRUCE ◽  
JOCHEN WEISS

Growth inhibition of four strains of Escherichia coli O157:H7 (H1730, F4546, 932, and E0019) and Listeria monocytogenes (Scott A, 101, 108, and 310) by essential oil components (carvacrol and eugenol) solubilized in nonionic surfactant micelles (Surfynol 465 and 485W) was investigated. Concentrations of encapsulated essential oil components ranged from 0.02 to 1.25% depending on compound, surfactant type, and surfactant concentration (0.5 to 5%). Eugenol encapsulated in Surfynol 485W micelles was most efficient in inhibiting growth of the pathogens; 1% Surfynol 485W and 0.15% eugenol was sufficient to inhibit growth of all strains of E. coli O157:H7 and three of four strains of L. monocytogenes (Scott A, 310, and 108). The fourth strain, L. monocytogenes 101, was inhibited by 2.5% Surfynol and 0.225% eugenol. One percent Surfynol 485W in combination with 0.025% carvacrol was effective in inhibiting three of four strains of E. coli O157:H7. Strain H1730 was the most resistant strain, requiring 0.3% carvacrol and 5% surfactant for complete inhibition. Growth inhibition of L. monocytogenes by combinations of carvacrol and Surfynol 465 ranged between 0.15 and 0.35% and 1 and 3.75%, respectively. Generally, the antimicrobial activity of Surfynol 465 in combination with eugenol was higher than that for the combination with carvacrol. The potent activity was attributed to increased solubility of essential oil components in the aqueous phase due to the presence of surfactants and improved interactions of antimicrobials with microorganisms.


2006 ◽  
Vol 69 (5) ◽  
pp. 1046-1055 ◽  
Author(s):  
MOUNIA OUSSALAH ◽  
STÉPHANE CAILLET ◽  
MONIQUE LACROIX

The mechanism of the antimicrobial action of Spanish oregano (Corydothymus capitatus), Chinese cinnamon (Cinnamomum cassia), and savory (Satureja montana) essential oils against cell membranes and walls of bacteria was studied by the measurement of the intracellular pH and ATP concentration, the release of cell constituents, and the electronic microscopy observations of the cells when these essential oils at their MICs were in contact with Escherichia coli O157:H7 and Listeria monocytogenes. E. coli O157:H7 and L. monocytogenes, two pathogenic foodborne bacteria, were used as gram-negative and gram-positive bacterial models, respectively. Treatment with these essential oils at their MICs affected the membrane integrity of bacteria and induced depletion of the intracellular ATP concentration. Spanish oregano and savory essential oils, however, induced more depletion than Chinese cinnamon oil. An increase of the extracellular ATP concentration was observed only when Spanish oregano and savory oils were in contact with E. coli O157:H7 and L. monocytogenes. Also, a significantly higher (P ≤0.05) cell constituent release was observed in the supernatant when E. coli O157:H7 and L. monocytogenes cells were treated with Chinese cinnamon and Spanish oregano oils. Chinese cinnamon oil was more effective to reduce significantly the intracellular pH of E. coli O157:H7, whereas Chinese cinnamon and Spanish oregano decreased more significantly the intracellular pH of L. monocytogenes. Electronic microscopy observations revealed that the cell membrane of both treated bacteria was significantly damaged. These results suggest that the cytoplasmic membrane is involved in the toxic action of essential oils.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244153
Author(s):  
Diana Ibañez-Peinado ◽  
Maria Ubeda-Manzanaro ◽  
Antonio Martínez ◽  
Dolores Rodrigo

The antimicrobial capability of chitosan from Tenebrio molitor as compared with chitosan from crustacean (Penaeus monodon) on different pathogenic microorganisms of concern in food safety was studied. The antimicrobial effect was tested at pH 5 and pH 6.2 and at two different initial concentrations (103 or 106 CFU/mL). Results indicated that chitosan from both sources have antimicrobial activity, although the effect depended on the microorganism considered (Salmonella Typhimurium, Listeria monocytogenes and Escherichia coli O157:H7). Our results indicated that Salmonella was the most resistant bacteria, and that chitosan from insect was less active than chitosan from crustacean, especially against Salmonella. Another important factor on antimicrobial activity was the pH of the sample. When chitosan was added to a solution with a pH of 6.2 it was more active against Listeria and Escherichia coli, than at pH 5.00. Besides, the effect of chitosan appears to decrease with the incubation time, since some increases in counts were observed on E. coli and Salmonella after the 24 and 49 hours of incubation.


Sign in / Sign up

Export Citation Format

Share Document