Photoprotective and Anti-Inflammatory Properties of Vina-Ginsenoside R7 Ameliorate Ultraviolet B-Induced Photodamage in Normal Human Dermal Fibroblasts

2019 ◽  
Vol 189 (3) ◽  
pp. 729-744 ◽  
Author(s):  
Xiao-Yi Liu ◽  
Eunson Hwang ◽  
Bom Park ◽  
Yong-Kun Xiao ◽  
Tae-Hoo Yi
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ken Shirato ◽  
Tomoko Koda ◽  
Jun Takanari ◽  
Junetsu Ogasawara ◽  
Takuya Sakurai ◽  
...  

We recently reported that ETAS 50, a standardized extract from theAsparagus officinalisstem, exerted anti-inflammatory effects on ultraviolet-B- (UV-B-) irradiated normal human dermal fibroblasts (NHDFs) by inhibiting nuclear factor-κB p65 nuclear import and the resulting interleukin-1β(IL-1β) expression. To further elucidate the antiphotoaging potency of ETAS 50, we examined the anti-inflammatory effects on UV-B-irradiated NHDFs by focusing on the stress-activated mitogen-activated protein kinase (MAPK) and Akt signaling pathways. NHDFs were treated with 1 mg/mL of ETAS 50 or dextrin (vehicle control) after UV-B irradiation (20 mJ/cm2) for different time periods. Phosphorylation levels of c-Jun N-terminal kinase (JNK), p38 MAPK, and Akt were analyzed by western blotting. IL-6 mRNA levels were analyzed by real-time polymerase chain reaction. UV-B-irradiated NHDFs showed increased phosphorylation levels of JNK, p38 MAPK, and Akt, as well as increased mRNA levels of IL-6. ETAS 50 treatment after UV-B irradiation suppressed the increased phosphorylation levels of Akt without affecting those of JNK and p38 MAPK. ETAS 50 as well as Akt inhibitor Perifosine repressed UV-B irradiation-induced IL-6 mRNA expression. These results suggest that ETAS 50 treatment represses UV-B irradiation-induced IL-6 expression by suppressing Akt phosphorylation. The present findings demonstrate the potential of ETAS 50 to prevent photoaging by attenuating UV-B irradiation-induced proinflammatory responses in skin fibroblasts.


2019 ◽  
Vol 14 (8) ◽  
pp. 1934578X1987242
Author(s):  
Yumin Kim ◽  
Kyung Suk Bae

Ultraviolet radiation induces skin photoaging, which is associated with the elevation of matrix metalloproteinase-1 (MMP-1) and the decrease of procollagen. Nasturtium officinale plays a well-known role in the treatment of sulfur-containing compounds and their important role in protecting human health. However, their skin protective activity toward UVB-induced photodamage remains unclear. In the present study, we investigated the protective effect of indole 3-acetonitrile-4-methoxy-2- S-β-d-glucopyranoside (IAMG) from N. officinale on UVB-irradiated normal human dermal fibroblasts (NHDF). Our results show that IAMG enhanced NHDF cell migration. The UVB-induced increases in MMP-1 and decrease in type I procollagen were ameliorated by IAMG treatment. Taken together, our data strongly suggest that IAMG from N. officinale could reduce UVB-induced photodamage.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ken Shirato ◽  
Tomoko Koda ◽  
Jun Takanari ◽  
Takuya Sakurai ◽  
Junetsu Ogasawara ◽  
...  

Ultraviolet (UV) irradiation induces proinflammatory responses in skin cells, including dermal fibroblasts, accelerating premature skin aging (photoaging). ETAS 50, a standardized extract from theAsparagus officinalisstem, is a novel and unique functional food that suppresses proinflammatory responses of hydrogen peroxide-stimulated skin fibroblasts and interleukin- (IL-) 1β-stimulated hepatocytes. To elucidate its antiphotoaging potencies, we examined whether ETAS 50 treatment after UV-B irradiation attenuates proinflammatory responses of normal human dermal fibroblasts (NHDFs). UV-B-irradiated NHDFs showed reduced levels of the cytosolic inhibitor of nuclear factor-κBα(IκBα) protein and increased levels of nuclear p65 protein. The nuclear factor-κB nuclear translocation inhibitor JSH-23 abolished UV-B irradiation-induced IL-1βmRNA expression, indicating that p65 regulates transcriptional induction. ETAS 50 also markedly suppressed UV-B irradiation-induced increases in IL-1βmRNA levels. Immunofluorescence analysis revealed that ETAS 50 retained p65 in the cytosol after UV-B irradiation. Western blotting also showed that ETAS 50 suppressed the UV-B irradiation-induced increases in nuclear p65 protein. Moreover, ETAS 50 clearly suppressed UV-B irradiation-induced distribution of importin-αprotein levels in the nucleus without recovering cytosolic IκBαprotein levels. These results suggest that ETAS 50 exerts anti-inflammatory effects on UV-B-irradiated NHDFs by suppressing the nuclear import machinery of p65. Therefore, ETAS 50 may prevent photoaging by suppressing UV irradiation-induced proinflammatory responses of dermal fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document