Gene Expression Profiles of Mouse Striatum in Control and Maneb + Paraquat-induced Parkinson’s Disease Phenotype: Validation of Differentially Expressed Energy Metabolizing Transcripts

2008 ◽  
Vol 40 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Suman Patel ◽  
Kavita Singh ◽  
Seema Singh ◽  
Mahendra Pratap Singh
2021 ◽  
Author(s):  
Federico Ferraro ◽  
Christina Fevga ◽  
Vincenzo Bonifati ◽  
Wim Mandemakers ◽  
Ahmed Mahfouz ◽  
...  

Several studies have analyzed gene expression profiles in the substantia nigra to better understand the pathological mechanisms causing Parkinson's disease (PD). However, the concordance between the identified gene signatures in these individual studies was generally low. This might be caused by a change in cell type composition as loss of dopaminergic neurons in the substantia nigra pars compacta is a hallmark of PD. Through an extensive meta-analysis of nine previously published microarray studies, we demonstrated that a big proportion of the detected differentially expressed genes was indeed caused by cyto-architectural alterations due to the heterogeneity in the neurodegenerative stage and/or technical artifacts. After correcting for cell composition, we identified a common signature that deregulated the previously unreported ammonium transport, as well as known biological processes including bioenergetic pathways, response to proteotoxic stress, and immune response. By integrating with protein-interaction data, we shortlisted a set of key genes, such as LRRK2, PINK1, and PRKN known to be related to PD; others with compelling evidence for their role in neurodegeneration, such as GSK3β, WWOX, and VPC; as well as novel potential players in the PD pathogenesis, including NTRK1, TRIM25, ELAVL1. Together, these data showed the importance of accounting for cyto-architecture in these analyses and highlight the contribution of multiple cell types and novel processes to PD pathology providing potential new targets for drug development.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiao-Yang Liao ◽  
Wei-Wen Wang ◽  
Zheng-Hui Yang ◽  
Jun Wang ◽  
Hang Lin ◽  
...  

To complement the molecular pathways contributing to Parkinson’s disease (PD) and identify potential biomarkers, gene expression profiles of two regions of the medulla were compared between PD patients and control. GSE19587 containing two groups of gene expression profiles [6 dorsal motor nucleus of the vagus (DMNV) samples from PD patients and 5 from controls, 6 inferior olivary nucleus (ION) samples from PD patients and 5 from controls] was downloaded from Gene Expression Omnibus. As a result, a total of 1569 and 1647 differentially expressed genes (DEGs) were, respectively, screened in DMNV and ION with limma package ofR. The functional enrichment analysis by DAVID server (the Database for Annotation, Visualization and Integrated Discovery) indicated that the above DEGs may be involved in the following processes, such as regulation of cell proliferation, positive regulation of macromolecule metabolic process, and regulation of apoptosis. Further analysis showed that there were 365 common DEGs presented in both regions (DMNV and ION), which may be further regulated by eight clusters of microRNAs retrieved with WebGestalt. The genes in the common DEGs-miRNAs regulatory network were enriched in regulation of apoptosis process via DAVID analysis. These findings could not only advance the understandings about the pathogenesis of PD, but also suggest potential biomarkers for this disease.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 198
Author(s):  
Federico Ferraro ◽  
Christina Fevga ◽  
Vincenzo Bonifati ◽  
Wim Mandemakers ◽  
Ahmed Mahfouz ◽  
...  

Several studies have analyzed gene expression profiles in the substantia nigra to better understand the pathological mechanisms causing Parkinson’s disease (PD). However, the concordance between the identified gene signatures in these individual studies was generally low. This might have been caused by a change in cell type composition as loss of dopaminergic neurons in the substantia nigra pars compacta is a hallmark of PD. Through an extensive meta-analysis of nine previously published microarray studies, we demonstrated that a big proportion of the detected differentially expressed genes was indeed caused by cyto-architectural alterations due to the heterogeneity in the neurodegenerative stage and/or technical artefacts. After correcting for cell composition, we identified a common signature that deregulated the previously unreported ammonium transport, as well as known biological processes such as bioenergetic pathways, response to proteotoxic stress, and immune response. By integrating with protein interaction data, we shortlisted a set of key genes, such as LRRK2, PINK1, PRKN, and FBXO7, known to be related to PD, others with compelling evidence for their role in neurodegeneration, such as GSK3β, WWOX, and VPC, and novel potential players in the PD pathogenesis. Together, these data show the importance of accounting for cyto-architecture in these analyses and highlight the contribution of multiple cell types and novel processes to PD pathology, providing potential new targets for drug development.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A4-A4
Author(s):  
Anushka Dikshit ◽  
Dan Zollinger ◽  
Karen Nguyen ◽  
Jill McKay-Fleisch ◽  
Kit Fuhrman ◽  
...  

BackgroundThe canonical WNT-β-catenin signaling pathway is vital for development and tissue homeostasis but becomes strongly tumorigenic when dysregulated. and alter the transcriptional signature of a cell to promote malignant transformation. However, thorough characterization of these transcriptomic signatures has been challenging because traditional methods lack either spatial information, multiplexing, or sensitivity/specificity. To overcome these challenges, we developed a novel workflow combining the single molecule and single cell visualization capabilities of the RNAscope in situ hybridization (ISH) assay with the highly multiplexed spatial profiling capabilities of the GeoMx™ Digital Spatial Profiler (DSP) RNA assays. Using these methods, we sought to spatially profile and compare gene expression signatures of tumor niches with high and low CTNNB1 expression.MethodsAfter screening 120 tumor cores from multiple tumors for CTNNB1 expression by the RNAscope assay, we identified melanoma as the tumor type with the highest CTNNB1 expression while prostate tumors had the lowest expression. Using the RNAscope Multiplex Fluorescence assay we selected regions of high CTNNB1 expression within 3 melanoma tumors as well as regions with low CTNNB1 expression within 3 prostate tumors. These selected regions of interest (ROIs) were then transcriptionally profiled using the GeoMx DSP RNA assay for a set of 78 genes relevant in immuno-oncology. Target genes that were differentially expressed were further visualized and spatially assessed using the RNAscope Multiplex Fluorescence assay to confirm GeoMx DSP data with single cell resolution.ResultsThe GeoMx DSP analysis comparing the melanoma and prostate tumors revealed that they had significantly different gene expression profiles and many of these genes showed concordance with CTNNB1 expression. Furthermore, immunoregulatory targets such as ICOSLG, CTLA4, PDCD1 and ARG1, also demonstrated significant correlation with CTNNB1 expression. On validating selected targets using the RNAscope assay, we could distinctly visualize that they were not only highly expressed in melanoma compared to the prostate tumor, but their expression levels changed proportionally to that of CTNNB1 within the same tumors suggesting that these differentially expressed genes may be regulated by the WNT-β-catenin pathway.ConclusionsIn summary, by combining the RNAscope ISH assay and the GeoMx DSP RNA assay into one joint workflow we transcriptionally profiled regions of high and low CTNNB1 expression within melanoma and prostate tumors and identified genes potentially regulated by the WNT- β-catenin pathway. This novel workflow can be fully automated and is well suited for interrogating the tumor and stroma and their interactions.GeoMx Assays are for RESEARCH ONLY, not for diagnostics.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 245 ◽  
Author(s):  
Y-h. Taguchi ◽  
Hsiuying Wang

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease characterized by both motor and nonmotor features. The diagnose of PD is based on a review of patients’ signs and symptoms, and neurological and physical examinations. So far, no tests have been devised that can conclusively diagnose PD. In this study, we explore both microRNA and gene biomarkers for PD. Microarray gene expression profiles for PD patients and healthy control are analyzed using a principal component analysis (PCA)-based unsupervised feature extraction (FE). 244 genes are selected to be potential gene biomarkers for PD. In addition, we implement these genes into Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and find that the 15 microRNAs (miRNAs), hsa-miR-92a-3p, 16-5p, 615-3p, 877-3p, 100-5p, 320a, 877-5p, 23a-3p, 484, 23b-3p, 15a-5p, 324-3p, 19b-3p, 7b-5p and 505-3p, significantly target these 244 genes. These miRNAs are shown to be significantly related to PD. This reveals that both selected genes and miRNAs are potential biomarkers for PD.


2008 ◽  
Vol 20 (1) ◽  
pp. 165
Author(s):  
X. S. Cui ◽  
X. Y. Li ◽  
T. Kim ◽  
N.-H. Kim

Trichostatin A (TSA) is an inhibitor of histone deacetylase and is able to alter gene expression patterns by interfering with the removal of acetyl groups from histones. The aim of this study was to determine the effect of TSA treatment on the development and gene expression patterns of mouse zygotes developing in vitro. The addition of 100 nm TSA to the culture medium did not affect the cleavage of mouse embryos (TSA treatment, 148/150 (99%) v. control, 107/107 (100%)); however, embryos that were treated with TSA arrested at the 2-cell stage (145/148, 98%). We estimated the number of nuclei in control and TSA-treated embryos by propidium iodide staining, taking into account the presence of any cells with two or more nuclei. At 62–63 h post-hCG stimulation, control zygotes had developed to the 4-cell stage and exhibited one nucleus in each blastomere, indicative of normal development. In contrast, we observed tetraploid nuclei in at least one blastomere in 20.8% (11/53) of the embryos that had been treated with TSA. At 28–29 h post-hCG stimulation (metaphase of the 1-cell stage), there was no difference in the mitotic index (as determined by analyzing the microtubule configuration) in the TSA group compared to the control group. At the 2-cell stage, however, we did not observe mitotic spindles and metaphase chromatin in embryos in the TSA treatment group compared to the controls. Interestingly, when embryos were cultured in TSA-free medium from 35 h post-hCG stimulation (S- or early G2-phase of the 2-cell stage) onward, almost all of them (47/50) developed to the blastocyst stage. In contrast, when embryos were cultured in TSA-free medium from 42 h post-hCG stimulation (middle G2-phase of the 2-cell stage) onward, they did not develop to the 4-cell stage. We used Illumina microarray technology to analyze the gene expression profiles in control and TSA-treated late 2-cell-stage embryos. Applied Biosystems Expression System software was used to extract assay signals and assay signal-to-noise ratio values from the microarray images. Our data showed that 897 genes were significantly (P < 0.05; 2-sample t-test) up- or down-regulated by TSA treatment compared to controls. Analysis using the PANTHER classification system (https://panther.appliedbiosystems.com) revealed that the 575 genes that were differentially expressed in the TSA group compared to the control were classified as being associated with putative biological processes or molecular function. Overall, in terms of putative biological processes, more nucleoside, nucleotide, and nucleic acid metabolism, protein metabolism and modification, signal transduction, developmental process, and cell cycle genes were differentially expressed between the TSA and control groups. In terms of putative molecular function, more nucleic acid-binding transcription factor and transferase genes were differentially expressed between the groups. The results collectively suggest that inhibition of histone acetylation in mouse embryos affects gene expression profiles at the time of zygotic genome activation, and this subsequently affects further development.


2019 ◽  
Vol 80 (04) ◽  
pp. 240-249
Author(s):  
Jiajia Wang ◽  
Jie Ma

Glioblastoma multiforme (GBM), an aggressive brain tumor, is characterized histologically by the presence of a necrotic center surrounded by so-called pseudopalisading cells. Pseudopalisading necrosis has long been used as a prognostic feature. However, the underlying molecular mechanism regulating the progression of GBMs remains unclear. We hypothesized that the gene expression profiles of individual cancers, specifically necrosis-related genes, would provide objective information that would allow for the creation of a prognostic index. Gene expression profiles of necrotic and nonnecrotic areas were obtained from the Ivy Glioblastoma Atlas Project (IVY GAP) database to explore the differentially expressed genes.A robust signature of seven genes was identified as a predictor for glioblastoma and low-grade glioma (GBM/LGG) in patients from The Cancer Genome Atlas (TCGA) cohort. This set of genes was able to stratify GBM/LGG and GBM patients into high-risk and low-risk groups in the training set as well as the validation set. The TCGA, Repository for Molecular Brain Neoplasia Data (Rembrandt), and GSE16011 databases were then used to validate the expression level of these seven genes in GBMs and LGGs. Finally, the differentially expressed genes (DEGs) in the high-risk and low-risk groups were subjected to gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and gene set enrichment analyses, and they revealed that these DEGs were associated with immune and inflammatory responses. In conclusion, our study identified a novel seven-gene signature that may guide the prognostic prediction and development of therapeutic applications.


2020 ◽  
pp. 153537022096732
Author(s):  
Lille Kurvits ◽  
Freddy Lättekivi ◽  
Ene Reimann ◽  
Liis Kadastik-Eerme ◽  
Kristjan M Kasterpalu ◽  
...  

Transcriptomics in Parkinson’s disease offers insights into the pathogenesis of Parkinson’s disease but obtaining brain tissue has limitations. In order to bypass this issue, we profile and compare differentially expressed genes and enriched pathways (KEGG) in two peripheral tissues (blood and skin) of 12 Parkinson’s disease patients and 12 healthy controls using RNA-sequencing technique and validation with RT-qPCR. Furthermore, we compare our results to previous Parkinson’s disease post mortem brain tissue and blood results using the robust rank aggregation method. The results show no overlapping differentially expressed genes or enriched pathways in blood vs. skin in our sample sets (25 vs. 1068 differentially expressed genes with an FDR ≤ 0.05; 1 vs. 9 pathways in blood and skin, respectively). A meta-analysis from previous transcriptomic sample sets using either microarrays or RNA-Seq yields a robust rank aggregation list of cortical gene expression changes with 43 differentially expressed genes; a list of substantia nigra changes with 2 differentially expressed genes and a list of blood changes with 1 differentially expressed gene being statistically significant at FDR ≤ 0.05. In cortex 1, KEGG pathway was enriched, four in substantia nigra and two in blood. None of the differentially expressed genes or pathways overlap between these tissues. When comparing our previously published skin transcription analysis, two differentially expressed genes between the cortex robust rank aggregation and skin overlap. In this study, for the first time a meta-analysis is applied on transcriptomic sample sets in Parkinson’s disease. Simultaneously, it explores the notion that Parkinson’s disease is not just a neuronal tissue disease by exploring peripheral tissues. The comparison of different Parkinson’s disease tissues yields surprisingly few significant differentially expressed genes and pathways, suggesting that divergent gene expression profiles in distinct cell lineages, metabolic and possibly iatrogenic effects create too much transcriptomic noise for detecting significant signal. On the other hand, there are signs that point towards Parkinson’s disease-specific changes in non-neuronal peripheral tissues in Parkinson’s disease, indicating that Parkinson’s disease might be a multisystem disorder.


Sign in / Sign up

Export Citation Format

Share Document