Genomic Subtraction Recovers Rye-Specific DNA Elements Enriched in the Rye Genome

2009 ◽  
Vol 42 (2) ◽  
pp. 160-167 ◽  
Author(s):  
Motonori Tomita ◽  
Keiichi Akai ◽  
Takayoshi Morimoto
2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Young-Dan Cho ◽  
Woo-Jin Kim ◽  
Hyun-Mo Ryoo ◽  
Hong-Gee Kim ◽  
Kyoung-Hwa Kim ◽  
...  

Abstract Background The Encyclopedia of DNA Elements (ENCODE) project has advanced our knowledge of the functional elements in the genome and epigenome. The aim of this article was to provide the comprehension about current research trends from ENCODE project and establish the link between epigenetics and periodontal diseases based on epigenome studies and seek the future direction. Main body Global epigenome research projects have emphasized the importance of epigenetic research for understanding human health and disease, and current international consortia show an improved interest in the importance of oral health with systemic health. The epigenetic studies in dental field have been mainly conducted in periodontology and have focused on DNA methylation analysis. Advances in sequencing technology have broadened the target for epigenetic studies from specific genes to genome-wide analyses. Conclusions In line with global research trends, further extended and advanced epigenetic studies would provide crucial information for the realization of comprehensive dental medicine and expand the scope of ongoing large-scale research projects.


1988 ◽  
Vol 263 (34) ◽  
pp. 18466-18472 ◽  
Author(s):  
P J Deutsch ◽  
J P Hoeffler ◽  
J L Jameson ◽  
J C Lin ◽  
J F Habener

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Kimberly M Mayer ◽  
Kazuyuki Mikami ◽  
James D Forney

Abstract The excision of internal eliminated sequences (IESs) from the germline micronuclear DNA occurs during the differentiation of a new macronuclear genome in ciliated protozoa. In Paramecium, IESs are generally short (28–882 bp), AT rich DNA elements that show few conserved sequence features with the exception of an inverted-terminal-repeat consensus sequence that has similarity to the ends of mariner/Tc1 transposons (Klobutcher and Herrick 1995). We have isolated and analyzed a mutant cell line that cannot excise a 370-bp IESs (IES2591) from the coding region of the 51A variable surface protein gene. A single micronuclear C to T transition within the consensus sequence prevents excision. The inability to excise IES2591 has revealed a 28-bp IES inside the larger IES, suggesting that reiterative integration of these elements can occur. Together, the consensus sequence mutation and the evidence for reiterative integration support the theory that Paramecium IESs evolved from transposable elements. Unlike a previously studied Paramecium IES, the presence of this IES in the macronucleus does not completely inhibit excision of its wild-type micronuclear copy through multiple sexual generations.


2021 ◽  
pp. 1-11
Author(s):  
David S. da Silva ◽  
Heriberto F. da Silva Filho ◽  
Marcelo B. Cioffi ◽  
Edivaldo H.C. de Oliveira ◽  
Anderson J.B. Gomes

With 82 species currently described, the genus <i>Leptodactylus</i> is the most diverse and representative one in the family Leptodactylidae. Concerning chromosomal organization, this genus represents an interesting and underexplored group since data from molecular cytogenetics are incipient, and little is known about the organization and distribution of repetitive DNA elements in the karyotypes. In this sense, this study aimed at providing a comparative analysis in 4 <i>Leptodactylus</i> species (<i>L. macrosternum, L. pentadactylus, L. fuscus,</i> and <i>Leptodactylus</i> cf<i>. podicipinus</i>), combining conventional cytogenetics (Giemsa staining, C-banding, and AgNOR staining) and mapping of molecular markers (18S rDNA, telomeric and microsatellite probes), to investigate mechanisms underlying their karyotype differentiation process. The results showed that all species had karyotypes with 2n = 22 and FN = 44, except for <i>Leptodactylus</i> cf. <i>podicipinus</i> which presented FN = 36. The 18S rDNA was observed in pair 8 of all analyzed species (corresponding to pair 4 in <i>L. pentadactylus</i>), coinciding with the secondary constrictions and AgNOR staining. FISH with microsatellite DNA probes demonstrated species-specific patterns, as well as an association of these repetitive sequences with constitutive heterochromatin blocks and ribosomal DNA clusters, revealing the dynamics of microsatellites in the genome of the analyzed species. In summary, our data demonstrate an ongoing process of genomic divergence inside species with almost similar karyotype, driven most likely by a series of pericentric inversions, followed by differential accumulation of repetitive sequences.


1999 ◽  
Vol 59 (1) ◽  
pp. 33-39 ◽  
Author(s):  
L. B. Nielsen ◽  
S. P. A. McCormick ◽  
S. G. Young

2005 ◽  
Vol 79 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Toshihiro Nagamine ◽  
Yu Kawasaki ◽  
Tetsutaro Iizuka ◽  
Shogo Matsumoto

ABSTRACT In BmN cells infected with the baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV), IE1, a principal transcriptional activator, localizes to sites of viral DNA replication. IE1 initially displays focal distribution in BmNPV-infected cells prior to DNA synthesis, whereas the protein expressed by transfection with the ie1 gene is distributed throughout the nucleoplasm instead of localized to discrete subnuclear structures. To identify the inducer of focus formation for IE1, we conducted transfection experiments with an IE1-GFP construct and found that cotransfection with genomic DNA fragments bearing the homologous region (hr) sequences caused the formation of IE1-green fluorescent protein (GFP) foci. The transfection of insect cells with a single plasmid containing exclusively the hr3 sequence and the IE1-GFP gene was sufficient to form IE1-GFP foci. These results suggest that hr elements are a primary determinant of the focal distribution of IE1. An analysis of a series of hr3 deletion mutants showed that a single copy of the direct repeat could induce the formation of IE1 foci. Targeted mutagenesis within the hr-binding domain of IE1-GFP caused impairment of the hr-dependent IE1 localization, suggesting that binding of IE1 to the hr elements is essential for the onset of IE1 focus formation. The observation of BmNPV IE1 foci in non-BmNPV-susceptible cells suggests that no species-specific factors are required for hr-dependent IE1 focus formation.


Sign in / Sign up

Export Citation Format

Share Document