repetitive dna elements
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 8)

H-INDEX

25
(FIVE YEARS 1)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009432
Author(s):  
Cheng-Lin Li ◽  
Mintie Pu ◽  
Wenke Wang ◽  
Amaresh Chaturbedi ◽  
Felicity J. Emerson ◽  
...  

Epigenetic alterations occur as organisms age, and lead to chromatin deterioration, loss of transcriptional silencing and genomic instability. Dysregulation of the epigenome has been associated with increased susceptibility to age-related disorders. In this study, we aimed to characterize the age-dependent changes of the epigenome and, in turn, to understand epigenetic processes that drive aging phenotypes. We focused on the aging-associated changes in the repressive histone marks H3K9me3 and H3K27me3 in C. elegans. We observed region-specific gain and loss of both histone marks, but the changes are more evident for H3K9me3. We further found alteration of heterochromatic boundaries in aged somatic tissues. Interestingly, we discovered that the most statistically significant changes reflected H3K9me3-marked regions that are formed during aging, and are absent in developing worms, which we termed “aging-specific repressive regions” (ASRRs). These ASRRs preferentially occur in genic regions that are marked by high levels of H3K9me2 and H3K36me2 in larval stages. Maintenance of high H3K9me2 levels in these regions have been shown to correlate with a longer lifespan. Next, we examined whether the changes in repressive histone marks lead to de-silencing of repetitive DNA elements, as reported for several other organisms. We observed increased expression of active repetitive DNA elements but not global re-activation of silent repeats in old worms, likely due to the distributed nature of repetitive elements in the C. elegans genome. Intriguingly, CELE45, a putative short interspersed nuclear element (SINE), was greatly overexpressed at old age and upon heat stress. SINEs have been suggested to regulate transcription in response to various cellular stresses in mammals. It is likely that CELE45 RNAs also play roles in stress response and aging in C. elegans. Taken together, our study revealed significant and specific age-dependent changes in repressive histone modifications and repetitive elements, providing important insights into aging biology.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1707
Author(s):  
Syed Farhan Ahmad ◽  
Worapong Singchat ◽  
Thitipong Panthum ◽  
Kornsorn Srikulnath

The distinctive biology and unique evolutionary features of snakes make them fascinating model systems to elucidate how genomes evolve and how variation at the genomic level is interlinked with phenotypic-level evolution. Similar to other eukaryotic genomes, large proportions of snake genomes contain repetitive DNA, including transposable elements (TEs) and satellite repeats. The importance of repetitive DNA and its structural and functional role in the snake genome, remain unclear. This review highlights the major types of repeats and their proportions in snake genomes, reflecting the high diversity and composition of snake repeats. We present snakes as an emerging and important model system for the study of repetitive DNA under the impact of sex and microchromosome evolution. We assemble evidence to show that certain repetitive elements in snakes are transcriptionally active and demonstrate highly dynamic lineage-specific patterns as repeat sequences. We hypothesize that particular TEs can trigger different genomic mechanisms that might contribute to driving adaptive evolution in snakes. Finally, we review emerging approaches that may be used to study the expression of repetitive elements in complex genomes, such as snakes. The specific aspects presented here will stimulate further discussion on the role of genomic repeats in shaping snake evolution.


2021 ◽  
pp. 1-11
Author(s):  
David S. da Silva ◽  
Heriberto F. da Silva Filho ◽  
Marcelo B. Cioffi ◽  
Edivaldo H.C. de Oliveira ◽  
Anderson J.B. Gomes

With 82 species currently described, the genus <i>Leptodactylus</i> is the most diverse and representative one in the family Leptodactylidae. Concerning chromosomal organization, this genus represents an interesting and underexplored group since data from molecular cytogenetics are incipient, and little is known about the organization and distribution of repetitive DNA elements in the karyotypes. In this sense, this study aimed at providing a comparative analysis in 4 <i>Leptodactylus</i> species (<i>L. macrosternum, L. pentadactylus, L. fuscus,</i> and <i>Leptodactylus</i> cf<i>. podicipinus</i>), combining conventional cytogenetics (Giemsa staining, C-banding, and AgNOR staining) and mapping of molecular markers (18S rDNA, telomeric and microsatellite probes), to investigate mechanisms underlying their karyotype differentiation process. The results showed that all species had karyotypes with 2n = 22 and FN = 44, except for <i>Leptodactylus</i> cf. <i>podicipinus</i> which presented FN = 36. The 18S rDNA was observed in pair 8 of all analyzed species (corresponding to pair 4 in <i>L. pentadactylus</i>), coinciding with the secondary constrictions and AgNOR staining. FISH with microsatellite DNA probes demonstrated species-specific patterns, as well as an association of these repetitive sequences with constitutive heterochromatin blocks and ribosomal DNA clusters, revealing the dynamics of microsatellites in the genome of the analyzed species. In summary, our data demonstrate an ongoing process of genomic divergence inside species with almost similar karyotype, driven most likely by a series of pericentric inversions, followed by differential accumulation of repetitive sequences.


2021 ◽  
Author(s):  
Cheng-Lin Li ◽  
Mintie Pu ◽  
Wenke Wang ◽  
Siu Sylvia Lee

AbstractEpigenetic alterations occur as organisms age, and lead to chromatin deterioration, loss of transcriptional silencing and genomic instability. Dysregulated epigenome has been linked to increased susceptibility to age-related disorders. We aim to characterize the age-dependent changes of the epigenome and, in turn, to understand epigenetic processes that drive aging phenotypes. In this study, we focused on the aging-associated changes in the repressive histone marks H3K9me3 and H3K27me3 in C. elegans. We observed redistribution of of both histone marks, but the changes are more significant for H3K9me3. We further found alteration of heterochromatic boundaries in aged somatic tissues. Interestingly, we discovered that the most significant changes reflected H3K9me3-marked regions that are formed during aging, and are absent in developing worms, which we termed “aging-associated repressive domains” (AARDs). These AARDs preferentially occur in genic regions that are marked by high levels of H3K9me2 and H3K36me2 in larval stages. Interestingly, maintenance of high H3K9me2 levels in these regions have been shown to correlate with longer lifespan. Next, we examined whether the changes in repressive histone marks lead to de-silencing of repetitive DNA elements, as reported for several other organisms. We observed increased expression of active repetitive DNA elements but not global re-activation of silent repeats in old worms, likely due to the distributed nature of repetitive elements in the C. elegans genome. Intriguingly, CELE45, a putative short interspersed nuclear elements (SINE), was greatly overexpressed at old age and upon heat stress. SINEs have been suggested to regulate transcription in response to various cellular stresses in mammals, it is likely that CELE45 RNAs also play roles in stress response and aging in C. elegans. Taken together, our study revealed significant and specific age-dependent changes in repressive histone modifications and repetitive elements, providing important insights into aging biology.Author summaryHeterochromatin refers to the portion of the genome that is tightly packed where genes stay silent. Heterochromatin is typically decorated by particular chemical groups called histone modifications, such as trimethylation of lysine 9 or lysine 27 on histone 3 (H3K9me3 or H3K27me3). To understand how the heterochromatin landscape may change from a “youthful” to an “aged” state, we monitored the genome-wide patterns of H3K9me3 and H3K27me3 during aging using the genetic model soil worm C. elegans. We found that while H3K27me3 remained relatively stable with age, H3K9me3 showed profound genome-wide redistribution in aged worms. We observed that new H3K9me3-marked heterochromatin preferentially formed in specific gene-rich regions in aged worms. Interestingly, these particular regions were marked by high levels of three other histone modifications when worms were young. This result suggested that H3K9me3 gain during aging is influenced by the gene-specific landscape of histone modifications established at young age rather than occurs in a stochastic manner. In summary, our study discovered reproducible and gene-specific changes in histone modifications that likely contribute to the aging phenotypes.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Curtis L. Petersen ◽  
Ji-Qing Chen ◽  
Lucas A. Salas ◽  
Brock C. Christensen

Abstract Background Multiple studies have related psychiatric disorders and immune alterations. Panic disorder (PD) has been linked with changes in leukocytes distributions in several small studies using different methods for immune characterization. Additionally, alterations in the methylation of repetitive DNA elements, such as LINE-1, have been associated with mental disorders. Here, we use peripheral blood DNA methylation data from two studies and an updated DNA methylation deconvolution library to investigate the relation of leukocyte proportions and methylation status of repetitive elements in 133 patients with panic disorder compared with 118 controls. Methods and results We used DNA methylation data to deconvolute leukocyte cell-type proportions and to infer LINE-1 element methylation comparing PD cases and controls. We also identified differentially methylated CpGs associated with PD using an epigenome-wide association study approach (EWAS), with models adjusting for sex, age, and cell-type proportions. Individuals with PD had a lower proportion of CD8T cells (OR: 0.86, 95% CI: 0.78–0.96, P-adj = 0.030) when adjusting for age, sex, and study compared with controls. Also, PD cases had significantly lower LINE-1 repetitive element methylation than controls (P < 0.001). The EWAS identified 61 differentially methylated CpGs (58 hypo- and 3 hypermethylated) in PD (Bonferroni adjusted P < 1.33 × 10–7). Conclusions These results suggest that those with panic disorder have changes to their immune system and dysregulation of repeat elements relative to controls.


BioTechniques ◽  
2020 ◽  
Vol 69 (2) ◽  
pp. 80-83 ◽  
Author(s):  
Kristina Warton ◽  
Yue Xu ◽  
Caroline Elizabeth Ford

The ‘hook effect’ describes a phenomenon in quantitative PCR (qPCR) amplification curves where fluorescence values decrease following an initial amplification phase. We propose that in intercalating dye-based qPCR, the ‘hook effect’ is due to the amplification of heterogeneous but related DNA targets. The decrease in fluorescence at later cycles occurs because the related products self-anneal to form a DNA heteroduplex with a melt temperature below the temperature at which the fluorescence measurement is made. We show this experimentally using qPCR of Alu family repetitive DNA elements.


2019 ◽  
Vol 20 (14) ◽  
pp. 3545
Author(s):  
Sukhonthip Ditcharoen ◽  
Luiz Antonio Carlos Bertollo ◽  
Petr Ráb ◽  
Eva Hnátková ◽  
Wagner Franco Molina ◽  
...  

The catfish family Siluridae contains 107 described species distributed in Asia, but with some distributed in Europe. In this study, karyotypes and other chromosomal characteristics of 15 species from eight genera were examined using conventional and molecular cytogenetic protocols. Our results showed the diploid number (2n) to be highly divergent among species, ranging from 2n = 40 to 92, with the modal frequency comprising 56 to 64 chromosomes. Accordingly, the ratio of uni- and bi-armed chromosomes is also highly variable, thus suggesting extensive chromosomal rearrangements. Only one chromosome pair bearing major rDNA sites occurs in most species, except for Wallago micropogon, Ompok siluroides, and Kryptoterus giminus with two; and Silurichthys phaiosoma with five such pairs. In contrast, chromosomes bearing 5S rDNA sites range from one to as high as nine pairs among the species. Comparative genomic hybridization (CGH) experiments evidenced large genomic divergence, even between congeneric species. As a whole, we conclude that karyotype features and chromosomal diversity of the silurid catfishes are unusually extensive, but parallel some other catfish lineages and primary freshwater fish groups, thus making silurids an important model for investigating the evolutionary dynamics of fish chromosomes.


Gene ◽  
2018 ◽  
Vol 644 ◽  
pp. 4-12
Author(s):  
Xoana Taboada ◽  
Magalí Rey ◽  
Carmen Bouza ◽  
Ana Viñas

2017 ◽  
Vol 8 ◽  
Author(s):  
Xuan D. Ho ◽  
Hoang G. Nguyen ◽  
Le H. Trinh ◽  
Ene Reimann ◽  
Ele Prans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document