scholarly journals Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol–gel method

2013 ◽  
Vol 36 (4) ◽  
pp. 521-533 ◽  
Author(s):  
SARBANI BASU ◽  
YEONG-HER WANG ◽  
C GHANSHYAM ◽  
PAWAN KAPUR
2021 ◽  
Vol 93 (3) ◽  
pp. 30401
Author(s):  
Jiaxing Wang ◽  
Hai Yu ◽  
Yong Zhang

SnO2 nanoparticle architectures were successfully synthesized using a sol-gel method and developed for acetone gas detection. The morphology and structure of the particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SnO2 nanoparticle architectures were configured as high-performance sensors to detect acetone and showed a very fast response time (<1 s), a short recovery time (10 s), good repeatability and high selectivity at a relatively low working temperature. Thus, SnO2 nanoparticles should be promising candidates for designing and fabricating acetone gas sensors with good gas sensing performance. The possible gas sensing mechanism is also presented.


2018 ◽  
Vol 766 ◽  
pp. 601-608 ◽  
Author(s):  
Hao Shen ◽  
Yinong Yin ◽  
Kun Tian ◽  
Karthikeyan Baskaran ◽  
Libing Duan ◽  
...  

2011 ◽  
Vol 495 ◽  
pp. 323-326 ◽  
Author(s):  
Ming Zhao ◽  
Li Hui Sun ◽  
Ji Fan Hu ◽  
Hong Wei Qin

The La1-xCaxFeO3 nanocrystalline powders were prepared by sol-gel method. These powders crystallized as perovskite orthorhombic structure. With an increase of Ca content, the resistance of La1-xCaxFeO3 sensors in air decreases at first, undergoes a minimum at x=0.3, and then increases again. La1-xCaxFeO3-based sensors show sensitive responses to CO. Among those La1-xCaxFeO3-based sensors, the sensor with x=0.2 shows the highest response to 200 ppm CO at operating temperatures below 325°C. The highest response S=(RCO-Rair)/RCO for the La0.8Ca0.2FeO3 based sensor to 200 ppm CO is 87% with response time 15 s and recovery time 60 s at an operating temperature of 100°C.


RSC Advances ◽  
2017 ◽  
Vol 7 (53) ◽  
pp. 33419-33425 ◽  
Author(s):  
Li Sun ◽  
Wencheng Fang ◽  
Ying Yang ◽  
Hui Yu ◽  
Tingting Wang ◽  
...  

Porous single-crystal In2O3 nanosheet was well-designed and prepared through calcination after liquid reflux, then exhibited a distinguished response, fast response time to NOx with good selectivity and low detection limit at room temperature.


2018 ◽  
Vol 258 ◽  
pp. 527-534 ◽  
Author(s):  
Zaihua Duan ◽  
Min Xu ◽  
Tingshuai Li ◽  
Yong Zhang ◽  
Hefeng Zou

1994 ◽  
Vol 23 (11) ◽  
pp. 2035-2038 ◽  
Author(s):  
Masaaki Kanamori ◽  
Mitsuhiro Takeuchi ◽  
Yutaka Ohya ◽  
Yasutaka Takahashi

RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 79343-79349 ◽  
Author(s):  
Fang Wang ◽  
Hairong Li ◽  
Zhaoxin Yuan ◽  
Yongzhe Sun ◽  
Fangzhi Chang ◽  
...  

In this paper, CuO nanoparticles were synthetized via a sol–gel method and their corresponding gas sensor was achieved simultaneously.


2017 ◽  
Vol 887 ◽  
pp. 32-40 ◽  
Author(s):  
Aminuddin Debataraja ◽  
Brian Yuliarto ◽  
Nugraha ◽  
Bambang Sunendar ◽  
Hiskia

Gas sensor performance is strongly influenced by the crystal structure, composition and morphology of the material used. In this paper, structural and morphological analysis of nanocomposite SnO2-Graphene synthesized by Sol-Gel method with the composition of 1:1, 1:2, 1:3 will be described. Analysis of the morphology and structure of nanocomposite SnO2-Graphene is investigated using XRD, SEM and TEM with the purpose of obtaining the crystal structure, morphology, composition and size of the resulting particles. The XRD results showed that the formation of the crystalline phase can be recorded at 2θ = 26.64; 34.2; 51.92, where the results of SEM show that the nanomaterial SnO2 has tetragonal structure while the graphene has hexagonal structure. The nanocomposite SnO2-Graphene has nanorod pattern. Furthermore, the surface analysis using TEM of nanocomposite SnO2-Graphene shows that the surface has the rod diameter in the range of 5-8 nm. The unique nanopattern of SnO2-Graphene will have potential applicability as the sensing material for CO gas sensor.


2008 ◽  
Vol 17 (2) ◽  
pp. 147-150 ◽  
Author(s):  
S.J. Park ◽  
J.H. Kwak ◽  
J. Park ◽  
H.Y. Lee ◽  
S.E. Moon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document