scholarly journals Bacteroides uniformis CECT 7771 Modulates the Brain Reward Response to Reduce Binge Eating and Anxiety-Like Behavior in Rat

Author(s):  
Ana Agustí ◽  
Isabel Campillo ◽  
Tiziano Balzano ◽  
Alfonso Benítez-Páez ◽  
Inmaculada López-Almela ◽  
...  

AbstractFood addiction (FA) is characterized by behavioral and neurochemical changes linked to loss of food intake control. Gut microbiota may influence appetite and food intake via endocrine and neural routes. The gut microbiota is known to impact homeostatic energy mechanisms, but its role in regulating the reward system is less certain. We show that the administration of Bacteroides uniformis CECT 7771 (B. uniformis) in a rat FA model impacts on the brain reward response, ameliorating binge eating and decreasing anxiety-like behavior. These effects are mediated, at least in part, by changes in the levels of dopamine, serotonin, and noradrenaline in the nucleus accumbens and in the expression of dopamine D1 and D2 receptors in the prefrontal cortex and intestine. B. uniformis reverses the fasting-induced microbiota changes and increases the abundance of species linked to healthy metabolotypes. Our data indicate that microbiota-based interventions might help to control compulsive overeating by modulating the reward response.

2020 ◽  
pp. 609-633
Author(s):  
Edmund T. Rolls

In this Chapter a comparison is made between computations in the brain and computations performed in computers. This is intended to be helpful to those engineers, computer scientists, AI specialists et al interested in designing new computers that emulate aspects of brain function. In fact, the whole of this book is intended to be useful for this aim, by setting out what is computed by different brain systems, and what we know about how it is computed. It is essential to know this if an emulation of brain function is to be performed, and this is important to enable this group of scientists to bring their expertise to help understand brain function more. The Chapter also considers the levels of investigation, which include the computational, necessary to understand brain function; and some applications of this understanding, to for example how our developing understanding is relevant to understanding disorders, including for example of food intake control leading to obesity. Finally, Section 19.10 makes it clear why the focus of this book is on computations in primate (and that very much includes human) brains, rather than on rodent (rat and mice) brains. It is because the systems-level organization of primate including human brains is quite different from that in rodents, in many fundamental ways that are described.


2005 ◽  
Vol 65 (2) ◽  
pp. 353-361 ◽  
Author(s):  
L. C. Reis ◽  
A. C. Almeida ◽  
P. L. Cedraz-Mercez ◽  
E. L. Olivares ◽  
A. Marinho Jr. ◽  
...  

We investigated participation of the brain serotonergic system in food intake control by using oral and systemic administration of serotonin precursors in quails (Coturnix japonica). Dietary supplemental tryptophan (0.1-50.0 g/kg) provoked a dose-dependent inhibition of food intake during a 5-h observation period, which persisted up to 24 h for doses of 30.0 and 50.0 g/kg. Normally fed and fasted animals treated with hydroxytryptophan (12.5-50.0 mg/kg) by the intracoelomic route showed an acute inhibition of food intake. Hypophagia in fasted birds was only effective when the precursor was administered immediately before food presentation. A similar response was obtained by administering serotonin (0.125-2.5 mg/kg, sc), with animals showing a hypnogenic response within the first ten minutes after administration, suggesting that, in contrast to mammals, the amine crosses the blood-brain barrier in quails. Administration of hydroxytryptophan at all doses tested induced significant dipsogenic behavior despite the concomitant hypnogenic response. The results suggest the involvement of serotonergic pathways in food intake control in quails and also show, for the first time, hypnogenic action induced by serotonin and a hyperdipsic effect elicited by hydroxytryptophan.


2021 ◽  
Vol 22 (11) ◽  
pp. 5830
Author(s):  
Marina Romaní-Pérez ◽  
Clara Bullich-Vilarrubias ◽  
Inmaculada López-Almela ◽  
Rebeca Liébana-García ◽  
Marta Olivares ◽  
...  

Obesity currently represents a major societal and health challenge worldwide. Its prevalence has reached epidemic proportions and trends continue to rise, reflecting the need for more effective preventive measures. Hypothalamic circuits that control energy homeostasis in response to food intake are interesting targets for body-weight management, for example, through interventions that reinforce the gut-to-brain nutrient signalling, whose malfunction contributes to obesity. Gut microbiota–diet interactions might interfere in nutrient sensing and signalling from the gut to the brain, where the information is processed to control energy homeostasis. This gut microbiota–brain crosstalk is mediated by metabolites, mainly short chain fatty acids, secondary bile acids or amino acids-derived metabolites and subcellular bacterial components. These activate gut–endocrine and/or neural-mediated pathways or pass to systemic circulation and then reach the brain. Feeding time and dietary composition are the main drivers of the gut microbiota structure and function. Therefore, aberrant feeding patterns or unhealthy diets might alter gut microbiota–diet interactions and modify nutrient availability and/or microbial ligands transmitting information from the gut to the brain in response to food intake, thus impairing energy homeostasis. Herein, we update the scientific evidence supporting that gut microbiota is a source of novel dietary and non-dietary biological products that may beneficially regulate gut-to-brain communication and, thus, improve metabolic health. Additionally, we evaluate how the feeding time and dietary composition modulate the gut microbiota and, thereby, the intraluminal availability of these biological products with potential effects on energy homeostasis. The review also identifies knowledge gaps and the advances required to clinically apply microbiome-based strategies to improve the gut–brain axis function and, thus, combat obesity.


Endocrinology ◽  
2021 ◽  
Author(s):  
Amber L Alhadeff

Abstract Appropriate food intake requires exquisite coordination between the gut and the brain. Indeed, it has long been known that gastrointestinal signals communicate with the brain to promote or inhibit feeding behavior. Recent advances in the ability to monitor and manipulate neural activity in awake, behaving rodents has facilitated important discoveries about how gut signaling influences neural activity and feeding behavior. This review emphasizes recent studies that have advanced our knowledge of gut-brain signaling and food intake control, with a focus on how gut signaling influences in vivo neural activity in animal models. Moving forward, dissecting the complex pathways and circuits that transmit nutritive signals from the gut to the brain will reveal fundamental principles of energy balance, ultimately enabling new treatment strategies for diseases rooted in body weight control.


2021 ◽  
pp. 1-13
Author(s):  
Guojun Liu ◽  
Zhenhua Guo ◽  
Di Liu ◽  
He Meng ◽  
Yuming Zheng ◽  
...  

Abstract Domestic geese can reduce the amount of food intake when brooding. Because of the reduction in food intake, the total number of microorganisms in the gut is also reduced. Will this affect the goose’s thinking and make the goose stop brooding and eat food? We hypothesize that gut microbiota affects the brain through a brain–gut peptide and further regulates the breeding behavior of geese. In this study, we evaluated the microbiome related to the goose and transcription groups of brooding and egg production periods. The changes and differences in gut microbiota and gene expression of female geese in different reproduction periods were analyzed, and the possible interaction between them was explored. The results showed that the relative abundance of Faecalibacterium with a growth-promoting effect in the cecum was higher in the egg production group than in the brooding group. Microbial metabolic pathways with significant differences between the two groups were also enriched in the secondary functional groups with different gut microbiota metabolism. The downregulated genes in the egg production group were mainly related to energy metabolism, such as ATP synthesis-related genes. These results suggest that the brooding group’s gut microbiota can make relevant changes according to the reproduction stage of the goose. Since the amount of food taken in is reduced, it can promote the decomposition of the host’s fat. Simultaneously, insulin is also used to deliver messages to the brain; it is necessary to end the brooding behavior at an appropriate time and for eating to start.


2011 ◽  
Vol 4 (3) ◽  
pp. 201-207 ◽  
Author(s):  
Ashley N. Gearhardt ◽  
Marney A. White ◽  
Marc N. Potenza

2020 ◽  
Vol 57 (12) ◽  
pp. 5026-5043 ◽  
Author(s):  
Shan Liu ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Kangding Liu ◽  
Hong-Liang Zhang

Abstract Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.


Sign in / Sign up

Export Citation Format

Share Document