Hybrid of firefly algorithm and pattern search for solving optimization problems

2018 ◽  
Vol 12 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Fazli Wahid ◽  
Rozaida Ghazali
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 148264-148288 ◽  
Author(s):  
Fazli Wahid ◽  
M. Sultan Zia ◽  
Rao Naveed Bin Rais ◽  
Muhammad Aamir ◽  
Umair Muneer Butt ◽  
...  

Author(s):  
Rizk M. Rizk-Allah ◽  
Aboul Ella Hassanien

This chapter presents a hybrid optimization algorithm namely FOA-FA for solving single and multi-objective optimization problems. The proposed algorithm integrates the benefits of the fruit fly optimization algorithm (FOA) and the firefly algorithm (FA) to avoid the entrapment in the local optima and the premature convergence of the population. FOA operates in the direction of seeking the optimum solution while the firefly algorithm (FA) has been used to accelerate the optimum seeking process and speed up the convergence performance to the global solution. Further, the multi-objective optimization problem is scalarized to a single objective problem by weighting method, where the proposed algorithm is implemented to derive the non-inferior solutions that are in contrast to the optimal solution. Finally, the proposed FOA-FA algorithm is tested on different benchmark problems whether single or multi-objective aspects and two engineering applications. The numerical comparisons reveal the robustness and effectiveness of the proposed algorithm.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 250 ◽  
Author(s):  
Umesh Balande ◽  
Deepti Shrimankar

Firefly-Algorithm (FA) is an eminent nature-inspired swarm-based technique for solving numerous real world global optimization problems. This paper presents an overview of the constraint handling techniques. It also includes a hybrid algorithm, namely the Stochastic Ranking with Improved Firefly Algorithm (SRIFA) for solving constrained real-world engineering optimization problems. The stochastic ranking approach is broadly used to maintain balance between penalty and fitness functions. FA is extensively used due to its faster convergence than other metaheuristic algorithms. The basic FA is modified by incorporating opposite-based learning and random-scale factor to improve the diversity and performance. Furthermore, SRIFA uses feasibility based rules to maintain balance between penalty and objective functions. SRIFA is experimented to optimize 24 CEC 2006 standard functions and five well-known engineering constrained-optimization design problems from the literature to evaluate and analyze the effectiveness of SRIFA. It can be seen that the overall computational results of SRIFA are better than those of the basic FA. Statistical outcomes of the SRIFA are significantly superior compared to the other evolutionary algorithms and engineering design problems in its performance, quality and efficiency.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Amnat Panniem ◽  
Pikul Puphasuk

Artificial Bee Colony (ABC) algorithm is one of the efficient nature-inspired optimization algorithms for solving continuous problems. It has no sensitive control parameters and has been shown to be competitive with other well-known algorithms. However, the slow convergence, premature convergence, and being trapped within the local solutions may occur during the search. In this paper, we propose a new Modified Artificial Bee Colony (MABC) algorithm to overcome these problems. All phases of ABC are determined for improving the exploration and exploitation processes. We use a new search equation in employed bee phase, increase the probabilities for onlooker bees to find better positions, and replace some worst positions by the new ones in onlooker bee phase. Moreover, we use the Firefly algorithm strategy to generate a new position replacing an unupdated position in scout bee phase. Its performance is tested on selected benchmark functions. Experimental results show that MABC is more effective than ABC and some other modifications of ABC.


2020 ◽  
Vol 10 (24) ◽  
pp. 8961
Author(s):  
Peng-Yeng Yin ◽  
Po-Yen Chen ◽  
Ying-Chieh Wei ◽  
Rong-Fuh Day

Recently, two evolutionary algorithms (EAs), the glowworm swarm optimization (GSO) and the firefly algorithm (FA), have been proposed. The two algorithms were inspired by the bioluminescence process that enables the light-mediated swarming behavior for mating or foraging. From our literature survey, we are convinced with much evidence that the EAs can be more effective if appropriate responsive strategies contained in the adaptive memory programming (AMP) domain are considered in the execution. This paper contemplates this line and proposes the Cyber Firefly Algorithm (CFA), which integrates key elements of the GSO and the FA and further proliferates the advantages by featuring the AMP-responsive strategies including multiple guiding solutions, pattern search, multi-start search, swarm rebuilding, and the objective landscape analysis. The robustness of the CFA has been compared against the GSO, FA, and several state-of-the-art metaheuristic methods. The experimental result based on intensive statistical analyses showed that the CFA performs better than the other algorithms for global optimization of benchmark functions.


Author(s):  
Tahereh Hassanzadeh ◽  
Mohammad Reza Meybodi ◽  
Masoumeh Shahramirad

Firefly algorithm is a swarm based algorithm that can be used for solving optimization problems. This paper proposed an improved fuzzy adaptive firefly algorithm (FAFA). In the proposed FAFA, a fuzzy system is used to adapt Firefly Algorithm’s parameters in order to improve its ability in global and local searches. Also, we used different fireflies initializing intervals and different iteration numbers to show the algorithm capability to find global optima. Results focus on the two case study categories of function optimization (seven benchmark functions) and presented a novel optimal multilevel thresholding approach for histogram-based image segmentation by using proposed FAFA and Otsu method. Evidence indicates that the optimization results of proposed FAFA approach are so better than the standard FA.


2019 ◽  
Vol 10 (2) ◽  
pp. 1-20 ◽  
Author(s):  
Sujata Dash ◽  
Ruppa Thulasiram ◽  
Parimala Thulasiraman

Conventional algorithms such as gradient-based optimization methods usually struggle to deal with high-dimensional non-linear problems and often land up with local minima. Recently developed nature-inspired optimization algorithms are the best approaches for finding global solutions for combinatorial optimization problems like microarray datasets. In this article, a novel hybrid swarm intelligence-based meta-search algorithm is proposed by combining a heuristic method called conditional mutual information maximization with chaos-based firefly algorithm. The combined algorithm is computed in an iterative manner to boost the sharing of information between fireflies, enhancing the search efficiency of chaos-based firefly algorithm and reduces the computational complexities of feature selection. The meta-search model is implemented using a well-established classifier, such as support vector machine as the modeler in a wrapper approach. The chaos-based firefly algorithm increases the global search mobility of fireflies. The efficiency of the model is studied over high-dimensional disease datasets and compared with standard firefly algorithm, particle swarm optimization, and genetic algorithm in the same experimental environment to establish its superiority of feature selection over selected counterparts.


Sign in / Sign up

Export Citation Format

Share Document