scholarly journals Performance estimation of photovoltaic energy production

2020 ◽  
Vol 13 (3) ◽  
pp. 267-285
Author(s):  
Laura Casula ◽  
Guglielmo D’Amico ◽  
Giovanni Masala ◽  
Filippo Petroni

AbstractThis article deals with the production of energy through photovoltaic (PV) panels. The efficiency and quantity of energy produced by a PV panel depend on both deterministic factors, mainly related to the technical characteristics of the panels, and stochastic factors, essentially the amount of incident solar radiation and some climatic variables that modify the efficiency of solar panels such as temperature and wind speed. The main objective of this work is to estimate the energy production of a PV system with fixed technical characteristics through the modeling of the stochastic factors listed above. Besides, we estimate the economic profitability of the plant, net of taxation or subsidiary payment policies, considered taking into account the hourly spot price curve of electricity and its correlation with solar radiation, via vector autoregressive models. Our investigation ends with a Monte Carlo simulation of the models introduced. We also propose the pricing of some quanto options that allow hedging both the price risk and the volumetric risk.

2021 ◽  
Vol 239 ◽  
pp. 00019
Author(s):  
Kerry A. Sado ◽  
Lokman H. Hassan ◽  
Shivan Sado

The tilt angle of solar panels is significant for capturing solar radiation that reaches the surface of the panel. Photovoltaic (PV) performance and efficiency are highly affected by its angle of tilt with respect to the horizontal plane. The amount of radiation reaching the surface of a PV panel changes with the changes in its tilt angle, hence adding a solar tracking system will maximize the amount of solar radiation reaching the surface of a PV panel at any time during the day, however, integrating solar tracking system will increase the total cost and maintenance of any PV system. Thus, using an optimized fixed tilt angle is the solution to element the initial, maintenance, and operation costs of a solar tracking system. Yet, the fixed angle is location-specific because it depends on the daily, monthly, and yearly location of the sun. In this study; daily, monthly and seasonally angles are calculated mathematically and the amount of incident radiation on the surface of the PV panel is measured along with its voltage. By comparing the practical measurements of the output voltage of PV panels, an optimized tilt angle is decided.


2015 ◽  
Vol 6 (1) ◽  
pp. 11-17 ◽  
Author(s):  
G. Szabó ◽  
P. Enyedi ◽  
Gy. Szabó ◽  
I. Fazekas ◽  
T. Buday ◽  
...  

According to the challenge of the reduction of greenhouse gases, the structure of energy production should be revised and the increase of the ratio of alternative energy sources can be a possible solution. Redistribution of the energy production to the private houses is an alternative of large power stations at least in a partial manner. Especially, the utilization of solar energy represents a real possibility to exploit the natural resources in a sustainable way. In this study we attempted to survey the roofs of the buildings with an automatic method as the potential surfaces of placing solar panels. A LiDAR survey was carried out with 12 points/m2 density as the most up-to-date method of surveys and automatic data collection techniques. Our primary goal was to extract the buildings with special regard to the roofs in a 1 km2 study area, in Debrecen. The 3D point cloud generated by the LiDAR was processed with MicroStation TerraScan software, using semi-automatic algorithms. Slopes, aspects and annual solar radiation income of roof planes were determined in ArcGIS10 environment from the digital surface model. Results showed that, generally, the outcome can be regarded as a roof cadaster of the buildings with correct geometry. Calculated solar radiation values revealed those roof planes where the investment for photovoltaic solar panels can be feasible.


Author(s):  
Anand S. Joshi ◽  
Ibrahim Dincer ◽  
Bale V. Reddy

In this paper, an attempt is made to investigate the thermodynamic characteristics of a photovoltaic (PV) system based on exergy. A new efficiency is developed that is useful in studying the PV performance and possible improvements. Exergy analysis is applied to a PV system and its components, in order to evaluate the effect of various parameters e.g., voltage, current, area of the PV panel, fill factor and ambient temperature on exergy efficiency. Effect of solar radiation on power conversion efficiency is also evaluated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waqas Ahmed ◽  
Jamil Ahmed Sheikh ◽  
Muhammad Nouman ◽  
Mian Farhan Ullah ◽  
M. A. Parvez Mahmud

Abstract Background Households, as end energy users, consume grid electricity to meet their energy demands. However, grids across the globe for energy production are majorly based on fossil fuel technology and make the highest contributions to global warming and climate change due to greenhouse gases (GHG) emissions. This generic study aims to investigate the minute role of a single-end energy consumer in GHG mitigation by switching to a rooftop PV system to meet his energy demands and trading surplus energy to the grid through its techno-economic analysis. Method For the study impact, NASA Meteorological Data are used to select an ideal single energy user equipped with a 10-kW PV system based on annual average daily solar radiation and ambient temperature through MATLAB/Simulink, for 11 populous cities in Pakistan. Helioscope software is used to select tilt and azimuthal angles to maximize the solar radiation intercept. Afterward, RETScreen software is used for cost, financial and GHG analysis. Result and conclusion A single end energy user equipped with a 10-kW PV system switched to a green energy source from a fossil fuel-based grid has the potential to avoid the burning of 3570.6 L of gasoline by producing 16,832 kWh of green energy per annum, while financially recovering the 10-kW PV system’s 7337$ grid-tied investment in 5 years (equity) and in 9 years (equity) in a 9077$ stand-alone system over its 25-year life. This approach provides relief to end energy users from high priced grid electricity through environmental friendliness by mitigating 8.3 tons of CO2 equivalent emissions per annum from energy production, while providing relief to the main grid by grid stabilization through peak shaving, in the broad sense.


2019 ◽  
Vol 25 ◽  
pp. 1-19
Author(s):  
Sindri Þrastarson ◽  
Björn Marteinsson ◽  
Hrund Ólöf Andradóttir

The efficiency and production costs of solar panels have improved dramatically in the past decades. The Nordic countries have taken steps in instigating photovoltaic (PV) systems into energy production despite limited incoming solar radiation in winter. IKEA installed the first major PV system in Iceland with 65 solar panels with 17.55 kW of production capacity in the summer of 2018. The purpose of this research was to assess the feasibility of PV systems in Reykjavík based on solar irradiation measurements, energy production of a PV array located at IKEA and theory. Results suggests that net irradiation in Reykjavík (64°N, 21° V) was on average about 780 kWh/m2 per year (based on years 2008-2018), highest 140 kWh/m2 in July and lowest 1,8 kWh/m2 in December. Maximum annual solar power is generated by solar panels installed at a 40° fixed angle. PV panels at a lower angle produce more energy during summer. Conversely, higher angles maximize production in the winter. The PV system produced over 12 MWh over a one-year period and annual specific yield was 712 kWh/kW and performance ratio 69% which is about 10% lower than in similar studies in cold climates. That difference can be explained by snow cover, shadow falling on the panels and panels not being fixed at optimal slope. Payback time for the IKEA PV system was calculated 24 years which considers low electricity prices in Reykjavik and unforeseen high installation costs. Solar energy could be a feasible option in the future if production- and installation costs were to decrease and if the solar PV output could be sold to the electric grid in Iceland.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1087
Author(s):  
Emad Natsheh ◽  
Sufyan Samara

The photovoltaic (PV) panel’s output energy depends on many factors. As they are becoming the leading alternative energy source, it is essential to get the best out of them. Although the main factor for maximizing energy production is proportional to the amount of solar radiation reaching the photovoltaic panel surface, other factors, such as temperature and shading, influence them negatively. Moreover, being installed in a dynamic and frequently harsh environment causes a set of reasons for faults, defects, and irregular operations. Any irregular operation should be recognized and classified into faults that need attention and, therefore, maintenance or as being a regular operation due to changes in some surrounding factors, such as temperature or solar radiation. Besides, in case of faults, it would be helpful to identify the source and the cause of the problem. Hence, this study presented a novel methodology that modeled a PV system in a tree-like hierarchy, which allowed the use of a fuzzy nonlinear autoregressive network with exogenous inputs (NARX) to detect and classify faults in a PV system with customizable granularity. Moreover, the used methodology enabled the identification of the exact source of fault(s) in a fully automated way. The study was done on a string of eight PV panels; however, the paper discussed using the algorithm on a more extensive PV system. The used fuzzy NARX algorithm in this study was able to classify the faults that appeared in up to five out of the eight PV panels and to identify the faulty PV panels with high accuracy. The used hardware could be controlled and monitored through a Wi-Fi connection, which added support for Internet of Things applications.


As the energy consumption is steeply increasing globally, alternate methods must be adopted to meet the demands. Also to preserve the conventional resources, energy production by renewable sources such as solar, wind, geothermal, tidal, etc is the need of the hour. Energy generation through solar cells can be largely used. But, the harmonic content in the power generated from the solar panels are seemingly higher than the maximum allowable limits. Harmonics are the deviation in the output value from the actual value, caused due to various phenomenal factors. We have observed that the harmonics in the output power from the photo-voltaic cells is way to larger than the limited value. So, we have proposed a three-phase shunt connected IGBT based detuned filtering system to limit the harmonic levels within the desired values. To reduce the current THD value below the permissible limits as specified by the IEEE standards and also to maintain voltage regulation and power factor correction, as well as to improve the efficiency of the entire system


Author(s):  
Y.M. Irwan ◽  
A.R. Amelia ◽  
M. Irwanto ◽  
W.Z. Leow ◽  
Z. Syafiqah ◽  
...  

An increasing efficiency of the solar system can be improved by using hybrid cooling mechanism. This paper presents the impact of hybrid cooling mechanism on PV panel under indoor testing with varying solar intensity. Thus, the fabrication of a solar simulator for indoor testing reacts as the space solar radiation is described. The performance of PV panel which attached to a hybrid cooling mechanism compared with PV panel without cooling mechanism under variation of average solar radiation. Experimental tests were carried out for various average solar radiations by varying the number of lamps and/or the lamp-to-area distance. Without altering the spectral distribution, the characteristic of current-voltage of PV panel was analysed under average solar radiation which varied from 202 W/m<sup>2</sup> to 1003 W/m<sup>2</sup>. As the result, the PV panel with hybrid cooling system explored to generate more power output with decreasing in PV panel temperature. About 15.79 % increment of power output generated by PV panel with cooling at maximum average solar radiation. Furthermore, the PV panel temperature also can be decreased about 10.28 % respectively. The combination of DC fan and water pump as cooling mechanism plays an important role in generating efficient power output from PV panel.


Sign in / Sign up

Export Citation Format

Share Document