scholarly journals Recovery characteristics of different tube materials in relation to combustion products

2020 ◽  
Vol 23 (2) ◽  
pp. 83-90
Author(s):  
M. Karjalainen ◽  
A. Kontunen ◽  
M. Mäkelä ◽  
O. Anttalainen ◽  
A. Vehkaoja ◽  
...  

Abstract Common challenge in gas analyzers such as Ion Mobility Spectrometers (IMS) integrated into a measurement system is the reduced analysis speed that is partially limited by the temporal carry-over of sample molecules. It is caused by adsorption and absorption of the molecules into the gas tubes of the analyzer. We studied the recovery times of common tube materials: polyether ether ketone (PEEK), polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyethylene (PE), steel 316 L, parylene C coated steel and Silconert® coated steel from organic combustion products. The tests were performed in two temperatures, at 25 °C and at 70 °C. In addition, detailed analysis was performed for PTFE tube material at 33, 50, 70 and 100 °C to observe the temperature relation of desorption. Uncoated steel was found to have the best performance in increased temperature applications due lack of absorption. Major advantages from coatings compared to plane steel were not found. Plastics were found suitable materials in lower temperatures where adsorption exceeds absorption.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 421
Author(s):  
Jorge Oevermann ◽  
Peter Weber ◽  
Steffen H. Tretbar

The aim of this work was to extend conventional medical implants by the possibility of communication between them. For reasons of data security and transmitting distances, this communication should be realized using ultrasound, which is generated and detected by capacitive micromachined ultrasonic transducers (CMUTs). These offer the advantage of an inherent high bandwidth and a high integration capability. To protect the surrounding tissue, it has to be encapsulated. In contrast to previous results of other research groups dealing with the encapsulation of CMUTs, the goal here is to integrate the CMUT into the housing of a medical implant. In this work, CMUTs were designed and fabricated for a center frequency of 2 MHz in water and experimentally tested on their characteristics for operation behind layers of Polyether ether ketone (PEEK) and titanium, two typical materials for the housings of medical implants. It could be shown that with silicone as a coupling layer it is possible to operate a CMUT behind the housing of an implant. Although it changes the characteristics of the CMUT, the setup is found to be well suited for communication between two transducers over a distance of at least 8 cm.


2020 ◽  
Vol 14 (03) ◽  
pp. 456-461
Author(s):  
Rayhaneh Khalesi ◽  
Mahdi Abbasi ◽  
Zahra Shahidi ◽  
Masoumeh Hasani Tabatabaei ◽  
Zohreh Moradi

Abstract Objectives Advances in laboratory composites and their high wear resistance and fracture toughness have resulted in their growing popularity and increasing use for dental restorations. This study sought to assess the fracture toughness of three indirect composites bonded to dental substrate and polyether ether ketone (PEEK) polymer. Materials and Methods This in vitro study was conducted on two groups of dental and polymer substrates. Each substrate was bonded to three indirect composite resins. Sixty blocks (3 × 3 × 12 mm) were made of sound bovine anterior teeth and PEEK polymer. Sixty blocks (3 × 3 × 12 mm) were fabricated of CRIOS (Coltene, Germany), high impact polymer composite (HIPC; Bredent, Germany), and GRADIA (Indirect; GC, Japan) composite resins. Composites were bonded to dentin using Panavia F 2.0 (Kuraray, Japan). For bonding to PEEK, Combo.lign (Bredent) and Visio.Link (Bredent) luting cements were used. In all samples, a single-edge notch was created by a no. 11 surgical blade at the interface. The samples were subjected to 3,500 thermal cycles, and their fracture toughness was measured in a universal testing machine (Zwick/Roell, Germany) by application of four-point flexural load. Statistical Analysis Data were analyzed using one-way analysis of variance, Kruskal–Wallis. Results The fracture toughness of CRIOS–PEEK interface was significantly higher than HIPC–PEEK. The fracture toughness of GRADIA–PEEK was not significantly different from that of HIPC and CRIOS. The fracture toughness of GRADIA–dentin was significantly higher than HIPC–dentin. Conclusion Considering the limitations of this study, GRADIA has the highest bond strength to dentin, while CRIOS shows the highest bond strength to PEEK.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2739 ◽  
Author(s):  
Korbinian Benz ◽  
Andreas Schöbel ◽  
Marisa Dietz ◽  
Peter Maurer ◽  
Jochen Jackowski

The aim of this in vitro pilot study was to analyse the adhesion behaviour of human osteoblasts and fibroblasts on polyether ether ketone (PEEK) when compared with titanium surfaces in an inflammatory environment under lipopolysaccharide (LPS) incubation. Scanning electron microscopy (SEM) images of primary human osteoblasts/fibroblasts on titanium/PEEK samples were created. The gene expression of the LPS-binding protein (LBP) and the LPS receptor (toll-like receptor 4; TLR4) was measured by real-time polymerase chain reaction (PCR). Immunocytochemistry was used to obtain evidence for the distribution of LBP/TLR4 at the protein level of the extra-cellular-matrix-binding protein vinculin and the actin cytoskeleton. SEM images revealed that the osteoblasts and fibroblasts on the PEEK surfaces had adhesion characteristics comparable to those of titanium. The osteoblasts contracted under LPS incubation and a significantly increased LBP gene expression were detected. This was discernible at the protein level on all the materials. Whereas no increase of TLR4 was detected with regard to mRNA concentrations, a considerable increase in the antibody reaction was detected on all the materials. As is the case with titanium, the colonisation of human osteoblasts and fibroblasts on PEEK samples is possible under pro-inflammatory environmental conditions and the cellular inflammation behaviour towards PEEK is lower than that of titanium.


Author(s):  
J Li ◽  
L Q Zhang

The main objective of this article is to develop a high wear resistance carbon fibre (CF)-reinforced polyether ether ketone composite with the addition of multi-wall carbon nano-tubes (MWCNT). These compounds were well mixed in a Haake batch mixer and compounded polymers were fabricated into sheets of known thickness by compression moulding. Samples were tested for wear resistance with respect to different concentrations of fillers. Wear resistance of a composite with 20 wt% of CF increases when MWCNT was introduced. The worn surface features have been examined using a scanning electron microscope (SEM). Photomicrographs of the worn surfaces revealed higher wear resistance with the addition of carbon nanotubes. Also better interfacial adhesion between carbon and vinyl ester in a carbon-reinforced vinyl ester composite was observed.


2013 ◽  
Vol 13 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Martin B. Kornblum ◽  
Alexander W.L. Turner ◽  
G. Bryan Cornwall ◽  
Michael A. Zatushevsky ◽  
Frank M. Phillips

2018 ◽  
Vol 199 ◽  
pp. 04010
Author(s):  
Deepak K. Kamde ◽  
Radhakrishna G. Pillai

Currently, large infrastructures (bridges, highways, etc.) are designed for more than 100 years. To achieve long service life, coated rebars (mostly, cement polymer composite (CPC) coated rebars) are being used to enhance the corrosion resistance. However, inadequately coated rebars can lead to premature corrosion. This can also affect the bond between the rebar and the concrete. To assess the effect of CPC coating on bond strength, pull-out specimens of (150×150×100) mm with 12 mm diameter rebar with 100 mm embedded length were cast and tested. For this, three replica specimens with two types of reinforcement namely, i) Uncoated steel ii) CPC coated steel were cast. To induce corrosion, additional five specimens with CPC coated steel rebars were cast with premixed chloride and cured for 28 days. During the curing period, continuous monitoring of corrosion potential and rate was done and degree of corrosion was assessed. The effect of degree of corrosion on bond of steel-concrete-coating interface was quantified. The CPC coated rebars without corrosion exhibited 10% bond reduction. CPC coated rebars with corrosion exhibited 30-70% reduction in bond strength. Also, the corrosion is found to adversely influence the stiffness of the bond.


Sign in / Sign up

Export Citation Format

Share Document