scholarly journals Erratum to: Regulation of hematopoietic development by ZBTB transcription factors

2016 ◽  
Vol 104 (3) ◽  
pp. 408-408
Author(s):  
Takahiro Maeda
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2789-2789
Author(s):  
Igor I. Slukvin ◽  
Maxim A. Vodyanik ◽  
Jack A. Bork ◽  
James A. Thomson

Abstract hES cells provide an unique opportunity to study the earliest stages of hematopoietic commitment which are not easily accessible in the human embryo. To model early hematopoietic development, we cultured H1 and H9 hES cell lines on OP9 stromal cells without the addition of cytokines. On day 2 of co-culture, hES cells up-regulated brachyury expression and began to form mesodermal-like colonies. A transient population of blast colony-forming cells (CFCs) with the potential to differentiate into blood and endothelial cells was detected on days 3–6 of co-culture. CD34+ cells first appeared on day 3–4 of co-culture, which was coincident with induction of the transcription factors GATA-1, GATA-2 and SCL. CD43+ and CD41a+ cells along with CFCs emerged 2 days later within CD34+ population; 3–4 days before the appearance of CD45+ cells. We were able to obtain up to 20% of CD34+ cells from hES/OP9 co-culture and isolate up to 107 CD34+ cells with more than 95% purity from a similar number of initially plated hES cells after 8–9 days of culture. The hES cell-derived CD34+ cells were highly enriched in CFCs, displayed CD90+CD117+CD164+CD38- phenotype of primitive hematopoietic progenitors, and contained ALDHhigh cells as well cells with verapamil-sensitive ability to efflux rhodamine 123. Isolated CD34+ cells differentiated into lymphoid (NK cells) as well as myeloid (neutrophils and macrophages) lineages when cultured on MS-5 stromal cells in the presence of SCF, Flt3-L, IL7 and IL3. These data indicate that hES cell/OP9 co-culture reproduces the major events that are observed during embryonal hematopoietic development, including the formation of lympho-myeloid progenitors. We employed OP9 system for identification of the phenotype of early hematopoietic progenitors in humans and to directly differentiate hES cells into different blood lineages.


Blood ◽  
2017 ◽  
Vol 129 (15) ◽  
pp. 2061-2069 ◽  
Author(s):  
Marella de Bruijn ◽  
Elaine Dzierzak

AbstractThe Runx family of transcription factors (Runx1, Runx2, and Runx3) are highly conserved and encode proteins involved in a variety of cell lineages, including blood and blood-related cell lineages, during developmental and adult stages of life. They perform activation and repressive functions in the regulation of gene expression. The requirement for Runx1 in the normal hematopoietic development and its dysregulation through chromosomal translocations and loss-of-function mutations as found in acute myeloid leukemias highlight the importance of this transcription factor in the healthy blood system. Whereas another review will focus on the role of Runx factors in leukemias, this review will provide an overview of the normal regulation and function of Runx factors in hematopoiesis and focus particularly on the biological effects of Runx1 in the generation of hematopoietic stem cells. We will present the current knowledge of the structure and regulatory features directing lineage-specific expression of Runx genes, the models of embryonic and adult hematopoietic development that provide information on their function, and some of the mechanisms by which they affect hematopoietic function.


2020 ◽  
Vol 117 (38) ◽  
pp. 23626-23635
Author(s):  
Jingmei Hsu ◽  
Hsuan-Ting Huang ◽  
Chung-Tsai Lee ◽  
Avik Choudhuri ◽  
Nicola K. Wilson ◽  
...  

Hematopoietic stem and progenitor cell (HSPC) formation and lineage differentiation involve gene expression programs orchestrated by transcription factors and epigenetic regulators. Genetic disruption of the chromatin remodeler chromodomain-helicase-DNA-binding protein 7 (CHD7) expanded phenotypic HSPCs, erythroid, and myeloid lineages in zebrafish and mouse embryos. CHD7 acts to suppress hematopoietic differentiation. Binding motifs for RUNX and other hematopoietic transcription factors are enriched at sites occupied by CHD7, and decreased RUNX1 occupancy correlated with loss of CHD7 localization. CHD7 physically interacts with RUNX1 and suppresses RUNX1-induced expansion of HSPCs during development through modulation of RUNX1 activity. Consequently, the RUNX1:CHD7 axis provides proper timing and function of HSPCs as they emerge during hematopoietic development or mature in adults, representing a distinct and evolutionarily conserved control mechanism to ensure accurate hematopoietic lineage differentiation.


Sign in / Sign up

Export Citation Format

Share Document