Global dynamics of delayed CHIKV infection model with multitarget cells

2018 ◽  
Vol 60 (1-2) ◽  
pp. 303-325 ◽  
Author(s):  
Ahmed M. Elaiw ◽  
Taofeek O. Alade ◽  
Saud M. Alsulami
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. M. Elaiw

We investigate the global dynamics of an HIV infection model with two classes of target cells and multiple distributed intracellular delays. The model is a 5-dimensional nonlinear delay ODEs that describes the interaction of the HIV with two classes of target cells, CD4+T cells and macrophages. The incidence rate of infection is given by saturation functional response. The model has two types of distributed time delays describing time needed for infection of target cell and virus replication. This model can be seen as a generalization of several models given in the literature describing the interaction of the HIV with one class of target cells, CD4+T cells. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected steady states of the model. We have proven that if the basic reproduction numberR0is less than unity then the uninfected steady state is globally asymptotically stable, and ifR0>1then the infected steady state exists and it is globally asymptotically stable.


2012 ◽  
Vol 05 (03) ◽  
pp. 1260012 ◽  
Author(s):  
RUI XU

In this paper, an HIV-1 infection model with absorption, saturation infection and an intracellular delay accounting for the time between viral entry into a target cell and the production of new virus particles is investigated. By analyzing the characteristic equations, the local stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is established. By using suitable Lyapunov functionals and LaSalle's invariance principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable; and if the basic reproduction ratio is greater than unity, sufficient condition is derived for the global stability of the chronic-infection equilibrium.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
Chunjin Wei ◽  
Lansun Chen

According to biological strategy for pest control, a mathematical model with periodic releasing virus particles for insect viruses attacking pests is considered. By using Floquet's theorem, small-amplitude perturbation skills and comparison theorem, we prove that all solutions of the system are uniformly ultimately bounded and there exists a globally asymptotically stable pest-eradication periodic solution when the amount of virus particles released is larger than some critical value. When the amount of virus particles released is less than some critical value, the system is shown to be permanent, which implies that the trivial pest-eradication solution loses its stability. Further, the mathematical results are also confirmed by means of numerical simulation.


2021 ◽  
Vol 26 (1) ◽  
pp. 21-40
Author(s):  
Junli Liu ◽  
Tailei Zhang

In this paper, we study a time-periodic model, which incorporates seasonality and host stage-structure. This model describes the propagation of Puumala hantavirus within the bank vole population of Clethrionomys glareolus. The basic reproduction number R0 is obtained. By appealing to the theory of monotone dynamical systems and chain transitive sets, we establish a threshold-type result on the global dynamics in terms of R0, that is, the virus-free periodic solution is globally attractive, and the virus dies out if R0 ≤ 1, while there exists a unique positive periodic solution, which is globally attractive, and the virus persists if R0 > 1. Numerical simulations are given to confirm our theoretical results and to show that cleaning environment and controlling the grow of mice population are essential control strategies to reduce hantavirus infection.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 2993
Author(s):  
Xin Jiang

This paper studies the global dynamics of a cholera model incorporating age structures and general infection rates. First, we explore the existence and point dissipativeness of the orbit and analyze the asymptotical smoothness. Then, we perform rigorous mathematical analysis on the existence and local stability of equilibria. Based on the uniform persistence, we further investigate the global behavior of the cholera infection model. The results of theoretical analysis are well confirmed by numerical simulations. This research generalizes some known results and provides deeper insights into the dynamics of cholera propagation.


2018 ◽  
Vol 24 (1) ◽  
pp. 47-72 ◽  
Author(s):  
Yuji Li ◽  
Rui Xu ◽  
Jiazhe Lin

In this paper, we propose an HBV viral infection model with continuous age structure and nonlinear incidence rate. Asymptotic smoothness of the semi-flow generated by the model is studied. Then we caculate the basic reproduction number and prove that it is a sharp threshold determining whether the infection dies out or not. We give a rigorous mathematical analysis on uniform persistence by reformulating the system as a system of Volterra integral equations. The global dynamics of the model is established by using suitable Lyapunov functionals and LaSalle's invariance principle. We further investigate the global behaviors of the HBV viral infection model with saturation incidence through numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document