A study on mesh size dependency of finite element blast structural analysis induced by non-uniform pressure distribution from high explosive blast wave

2008 ◽  
Vol 12 (4) ◽  
pp. 259-265 ◽  
Author(s):  
Jin Won Nam ◽  
Jang-Ho Jay Kim ◽  
Sung Bae Kim ◽  
Na Hyun Yi ◽  
Keun Joo Byun
2016 ◽  
Author(s):  
Aneet Dharmavaram Narendranath ◽  
Prathamesh Deshpande ◽  
Madhu Kolati ◽  
Datta Sandesh Manjunath

2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 65-71
Author(s):  
Hani Mizhir Magid ◽  
Badr Kamoon Dabis ◽  
Mohammad Abed alabas Siba

Plastic injection molding is widely used in many industrial applications. Plastic products are mostly used as disposable parts or as portable parts for fast replacements in many devices and machines. However, mass production is always adopted as an ideal method to cover the huge demands and customers’ needs. The problems of warpage due to thermal stresses, non-uniform pressure distribution around cavities, shrinkage, sticking and overall products quality are some of the important challenges. The main objective of this work is to analyze the stress distribution around the cavities during the molding and demolding to avoid their effects on the product quality. Moreover, diagnosing the critical pressure points around and overall the cavity projection area, which is subjected to high pressure will help to determine the optimum pressure distribution and ensure filling all cavities at the same time, which is another significant objective. Computer-aided design (CAD) and CATIA V5R20 are adopted for design and modeling procedures. The computer-aided engineering (CAE) commercial software ABAQUS 6141 has been dedicated as finite element simulation packages for the analysis of this process. Simulation results show that stress distribution over the cavities depends on both pressure and temperature gradient over the contact surfaces and can be considered as the main affecting factor. The acceptable ranges of the cavity stresses were determined according to the following values: the cavity and core region temperature of 55–65 °C, filling time of 10–20 s, ejection pressure 0.85 % of injection pressure, and holding time of 10–15 s. Also, theoretical results reveal that the uniform pressure and temperature distribution can be controlled by adjusting the cavities layout, runner, and gate size. Moreover, the simulation process shows that it is possible to facilitate and identify many difficulties during the process and modify the prototype to evaluate the overall manufacturability before further investing in tooling. Furthermore, it is also concluded that tooling iterations will be minimized according to the design of the selected process


2007 ◽  
Vol 22 (11) ◽  
pp. 3075-3086 ◽  
Author(s):  
A.C. Fischer-Cripps

The nature of the elastic unloading after an elastic-plastic contact with a conical or Berkovich indenter is studied. Three representative specimens having different mechanical properties were tested. Finite-element results for the pressure distribution beneath the indenter during unloading suggest that the effective indenter is in fact very closely approximated by a sphere in the case of fused silica (a material with a relatively low value of E/H) and a more uniform pressure distribution in the case of silicon and sapphire (materials with higher values of E/H). The proposed reason for these observations is the extent and influence of an elastic enclave directly beneath the indenter as revealed by finite-element analysis. The results also show that the pressure distribution retains its form during the entire unloading. The work seeks to provide a physical reason for the value of the fitting exponent m as used in popular nanoindentation data analysis procedures.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Peiyu He ◽  
Qinrong Qian ◽  
Yun Wang ◽  
Hong Liu ◽  
Erkuo Guo ◽  
...  

Slewing bearings are widely used in industry to provide rotary support and carry heavy load. The load-carrying capacity is one of the most important features of a slewing bearing, and needs to be calculated cautiously. This paper investigates the effect of mesh size on the finite element (FE) analysis of the carrying capacity of slewing bearings. A local finite element contact model of the slewing bearing is firstly established, and verified using Hertz contact theory. The optimal mesh size of finite element model under specified loads is determined by analyzing the maximum contact stress and the contact area. The overall FE model of the slewing bearing is established and strain tests were performed to verify the FE results. The effect of mesh size on the carrying capacity of the slewing bearing is investigated by analyzing the maximum contact load, deformation, and load distribution. This study of finite element mesh size verification provides an important guidance for the accuracy and efficiency of carrying capacity of slewing bearings.


2015 ◽  
Vol 809-810 ◽  
pp. 859-864
Author(s):  
Dănuţ Zahariea

In this paper, the finite element analysis for stress/deformation/modes of vibration for the centrifugal fan impeller with constant thickness backward-curved blades using CATIA software will be presented. The principal steps of the finite element analysis procedure using CATIA/Generative Structural Analysis environment will be presented: creating the 3D model; configuring the mesh; applying the restraints; applying the loads; running the numerical static analysis and the numerical frequency analysis; interpreting the results and observing the modes of vibration correlating with the impeller mode shape. This procedure will be used for 4 different centrifugal fan impellers according with the 4 blade design methods and the results will be comparatively analyzed. For each design method, two materials will be used: steel with density of 7860 kg/m3 and aluminium with density of 2710 kg/m3. Two important results have been obtained after the structural analysis: under the working conditions considered for the analysis, all 4 blade design methods leads to impellers with very good mechanical behaviour; any frequency of the main modes of vibrations for all blade design methods and for both materials is not in phase with the impeller speed, thus the possibility of resonance being eliminated.


AIAA Journal ◽  
1993 ◽  
Vol 31 (5) ◽  
pp. 923-929 ◽  
Author(s):  
R. Barboni ◽  
P. Gaudenzi ◽  
A. Mannini

Author(s):  
Guomin Ji ◽  
Nabila Berchiche ◽  
Sébastien Fouques ◽  
Thomas Sauder ◽  
Svein-Arne Reinholdtsen

The paper addresses the structural integrity assessment of lifeboat launched from floating production, storage and offloading (FPSO) vessels. The study is based on long-term drop lifeboat simulations accounting for more than 50 years of hindcast data of metocean conditions and corresponding FPSO motions. Selection of the load cases and strength analyses with high computational time is a challenge. The load cases analyzed are those corresponding to the 99th percentile of long term distribution of indicators for large slamming loads (CARXZ) or large submergence (Imaxsub). For six selected cases, the time-varying pressure distribution on the lifeboat hull during and after water impact is calculated by CFD simulations using StarCCM+. The finite element model (FEM) of the composite structure of the lifeboat is modelled by ABAQUS. Quasi-static finite element (FE) analyses are performed for the selected load cases. The structural integrity is assessed by the maximum stress and Tsai-Wu failure measure. In the present study, the load and resistance factors are combined and applied to the response. A sensitivity study is performed to investigate the non-linear load/response effects when the load factor is applied to the load. In addition, dynamic analysis is performed with the time-varying pressure distribution for selected case and the dynamic effect is investigated.


Sign in / Sign up

Export Citation Format

Share Document