Integrity Assessment of a Free-Fall Lifeboat Launched From a FPSO

Author(s):  
Guomin Ji ◽  
Nabila Berchiche ◽  
Sébastien Fouques ◽  
Thomas Sauder ◽  
Svein-Arne Reinholdtsen

The paper addresses the structural integrity assessment of lifeboat launched from floating production, storage and offloading (FPSO) vessels. The study is based on long-term drop lifeboat simulations accounting for more than 50 years of hindcast data of metocean conditions and corresponding FPSO motions. Selection of the load cases and strength analyses with high computational time is a challenge. The load cases analyzed are those corresponding to the 99th percentile of long term distribution of indicators for large slamming loads (CARXZ) or large submergence (Imaxsub). For six selected cases, the time-varying pressure distribution on the lifeboat hull during and after water impact is calculated by CFD simulations using StarCCM+. The finite element model (FEM) of the composite structure of the lifeboat is modelled by ABAQUS. Quasi-static finite element (FE) analyses are performed for the selected load cases. The structural integrity is assessed by the maximum stress and Tsai-Wu failure measure. In the present study, the load and resistance factors are combined and applied to the response. A sensitivity study is performed to investigate the non-linear load/response effects when the load factor is applied to the load. In addition, dynamic analysis is performed with the time-varying pressure distribution for selected case and the dynamic effect is investigated.

2017 ◽  
Vol 754 ◽  
pp. 268-271 ◽  
Author(s):  
Raffaele Sepe ◽  
M. Laiso ◽  
A. de Luca ◽  
Francesco Caputo

The study proposed within this paper deals with an application of finite element techniques to the thermo-structural analysis of a dissimilar butt-welded joint. Residual stresses induced by the fusion arc-welding of steel joints in power generation plants are a concern to the industry. Nowadays, the application of finite element method appears to be a very efficient method for the prediction and the investigation of the weld-induced residual stresses, nevertheless the detailed modelling of all phenomena involved in such process is still challenging. The structural integrity assessment of welded structures strongly requires a deep investigation of weld-induced residual stresses in order to be compliant with safety requirement of power plant. The longitudinal and transversal residual stresses in dissimilar material butt joints of 8 mm thick for V-groove shape were studied. The developed thermo-mechanical FE model as well as the simulation procedures are detailed and results are discussed. As a result of such work, it has been found out that residual stresses in the two dissimilar plates are characterized by very different magnitudes and distribution.


Author(s):  
Ankang Cheng ◽  
Nian-Zhong Chen

Structural integrity assessment for subsea pipelines at high pressure high temperature (HPHT) service conditions is one of the most challenging research topics in offshore engineering sector. This paper is to introduce an extended finite element method (XFEM) based numerical approach for structural integrity assessment for subsea pipelines serving HPHT reservoir. A 3D model of a quarter of subsea pipe section with an external semi-elliptical surface crack located at the weld toe is built and the crack propagation under fatigue load is simulated using the XFEM. Results are presented and investigated from both geometric and mechanical aspects. Theoretical basis and limitation for this technique are discussed. Suggestions are given for future application of the XFEM technique based on fracture mechanics when assessing the structural integrity of subsea pipelines at HPHT service conditions.


Author(s):  
Etienne de Rocquigny ◽  
Yoan Chevalier ◽  
Silvia Turato ◽  
Eric Meister

The structural integrity assessment of a nuclear Reactor Pressure Vessel (RPV) during accidental conditions such as loss-of-coolant accident (LOCA) is a major safety concern. Besides conventional deterministic calculations to justify as a nuclear operator the RPV integrity, Electricite´ de France (EDF) carries out probabilistic analyses. Probabilistic analyses become most interesting when some key variables, albeit conventionally taken at conservative values, can be modelled more accurately through statistical variability. In the context of low failure probabilities, this requires however a specific coupling effort between a specific probabilistic analysis method (e.g. Form-Sorm method) and the thermo-mechanical model to be reasonable in computing time. In this paper, the variability of a key variable — the mid-transient cooling temperature, tied to a climate-dependent tank — has been modelled, in some flaw configurations (axial sub-clad) for a French vessel. In a first step, a simplified analytical approach was carried out to assess its sensitivity upon the thermo-mechanical phenomena; hence, a direct coupling had to be implemented to allow a probabilistic calculation on the finite-element mechanical model, taking also into account a failure event properly defined through minimisation of the instantaneous failure margin during the transient. Comparison with the previous (indirectly-coupled) studies and the simplified analytical approach is drawn, demonstrating the interest of this new modelling effort to understand and order the sensitivity of the probability of crack initiation to the key variables. While being noticeable in the cases studied, sensitivity to the safety injection temperature variability proves to be less than the choice of the toughness model. Finally, regularity of the thermo-mechanical model is evidenced by the coupling exercise, suggesting that a modified response-surface based method could replace direct coupling for further investigation.


Author(s):  
Gurumurthy Kagita ◽  
Gudimella G. S. Achary ◽  
Mahesh B. Addala ◽  
Balaji Srinivasan ◽  
Penchala S. K. Pottem ◽  
...  

Abstract Mechanical damage in subsea pipelines in the form of local dents / buckles due to excessive bending deformation may severely threaten their structural integrity. A dent / buckle has two significant effects on the pipeline integrity. Notably, residual stresses are set up as result of the plastic deformation and stress concentrations are created due to change in pipe geometry caused by the denting / buckling process. To assess the criticality of a dent / buckle, which often can be associated with strain induced flaws in the highly deformed metal, integrity assessment is required. The objective of this paper is to evaluate the severity of dent / buckle in a 48” subsea pipeline and to make the rerate, repair or replacement decision. This paper presents a Level 3 integrity assessment of a subsea pipeline dent / buckle with metal loss, reported in in-line inspection (ILI), in accordance with Fitness-For-Service Standard API 579-1/ASME FFS-1. In this paper, the deformation process that caused the damage (i.e. dent / buckle) with metal loss is numerically simulated using ILI data in order to determine the magnitude of permanent plastic strain developed and to evaluate the protection against potential failure modes. For numerical simulation, elastic-plastic finite element analyses (FEA) are performed considering the material as well as geometric non-linearity using general purpose finite element software ABAQUS/CAE 2017. Based on the numerical simulation results, the integrity assessment of dented / buckled subsea pipeline segment with metal loss has been performed to assess the fitness-for-service at the operating loads.


Author(s):  
Stéphane Marie ◽  
Arnaud Blouin ◽  
Tomas Nicak ◽  
Dominique Moinereau ◽  
Anna Dahl ◽  
...  

Abstract The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. ATLAS+ WP3 focuses mainly on ductile tearing prediction for large defect in components: Several approaches have been developed to accurately model the ductile tearing process and to take into account phenomena such as the triaxiality effect, or the ability to predict large tearing in industrial components. These advanced models include local approach coupled models or advanced energetic approaches. Unfortunately, the application of these tools is today rather limited to R&D expertise. However, because of the continuous progress in the performance of the calculation tools and accumulated knowledge, in particular by members of ATLAS+, these models can now be considered as relevant for application in the context of engineering assessments. WP3 will therefore: • Illustrate the implementation of these models for industrial applications through the interpretation of large scale mock-ups (with cracks in weld joints for some of them), • Make recommendations for the implementation of the advanced models in engineering assessments, • Correct data from the conventional engineering approach by developing a methodology to produce J-Δa curve suitable case by case, based on local approach models, • Improve the tools, guidance and procedures for undertaking leak-before-break (LBB) assessments of piping components, particularly in relation to representing structural representative fracture toughness J-Resistance curves and the influence of weld residual stresses. To achieve these goals, WP3 is divided into 4 sub-WPs and this paper presents the progress of the work performed in each sub-WP after 24 months of activities.


2006 ◽  
Vol 321-323 ◽  
pp. 724-728
Author(s):  
Nam Su Huh ◽  
Yoon Suk Chang ◽  
Young Jin Kim

The present paper provides plastic limit load solutions for axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly plastic behavior. As a loading condition, both single and combined loadings are considered. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be valuable information for structural integrity assessment of cracked pipes.


Author(s):  
Arnaud Blouin ◽  
Stéphane Marie ◽  
Tomas Nicak ◽  
Antti Timperi ◽  
Peter Gill

Abstract The main objective and mission of the ATLAS+ project is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. ATLAS+ WP3 focuses mainly on ductile tearing prediction for large defect in piping and associated components: Several approaches have been developed to accurately model the ductile tearing process and to take into account phenomena such as triaxiality effects, or the ability to predict large tearing in industrial components. These advanced models include local approach coupled models or advanced energetic approaches. Unfortunately, the application of these tools is currently rather limited to R&D expertise. However, because of the continuous progress in the performance of calculation tools and accumulated knowledge, in particular by members of the ATLAS+ consortium, these models can now be considered as relevant for application in the context of engineering assessments. WP3 has been planned to: • Illustrate the implementation of these models for industrial applications through the interpretation of large scale mock-ups (with cracks in weld joints for some of them), • Make recommendations for the implementation of the advanced models in engineering assessments, • Correct data from the conventional engineering approach by developing a methodology to produce J-Δa curve suitable case by case, based on local approach models, • Improve the tools, guidance and procedures for undertaking leak-before-break (LBB) assessments of piping components, particularly in relation to representing structural representative fracture toughness J-Resistance curves and the influence of weld residual stresses. To achieve these goals, WP3 is divided into 4 sub-WPs and this paper presents the progress of the work performed in each sub-WP after 36 months of activities.


Author(s):  
Harry E. Coules

Abstract Structural integrity assessment often requires the interaction of multiple closely-spaced cracks or flaws in a structure to be considered. Although many procedures for structural integrity assessment include rules for determining the significance of flaw interaction, and for re-characterising interacting flaws, these rules can be difficult to validate in a fracture mechanics framework. int_defects is an open-source MATLAB toolbox which uses the Abaqus finite element suite to perform large-scale parametric studies in cracked-body analysis. It is designed to allow developers of assessment codes to check the accuracy of simplified interaction criteria under a wide range of conditions, e.g. for different interacting flaw geometries, material models and loading cases. int_defects can help analysts perform parametric studies to determine linear elastic crack tip stress field parameters, elastic-plastic parameters and plastic limit loads for simple three-dimensional cracked bodies relevant to assessment codes. This article focusses on the validation of int_defects using existing fracture mechanics results. Through a set of validation examples, int_defects is shown to produce accurate results for a very wide range of cases in both linear and non-linear cracked-body analysis. Nevertheless, it is emphasised that users of this software should be conscious of the inherent limitations of LEFM and EPFM theory when applied to real fracture processes, and effects such as constraint loss should be considered when formulating interaction criteria.


Author(s):  
Huifeng Jiang ◽  
Xuedong Chen ◽  
Zhichao Fan

Heretofore, several kinds of codes are applicable to the structural integrity assessment for pipe containing defects, i.e. API 579, R6 and BS 7910 etc. In this paper, different methods from API 579-1/ASME FFS-1: 2007 and R6-2000 were employed to assess the integrity of pipe containing a circumferential through-thickness crack. However, there was a significant difference between the calculated load ratios by these two codes, although the calculated fracture ratios were very close. To verify these results, elastic-plastic finite element analysis was carried out to calculate the limit load and the load ratio. Additionally, the experimental results and our previous engineering experience were also referred to. The final results imply that the larger load ratio obtained from R6-2000 rather than API 579 code is more reasonable for the pipe with good fracture toughness.


2021 ◽  
Author(s):  
Ibrahim M. Al Awadhi ◽  
Ashok M. Sharma ◽  
Sohail Akhter

Abstract Objective/Scope (25 - 75 word) Shell & Tube Heat exchangers are critical for incessant operation of processing plant. These exchangers may face integrity threats due to reduction in shell thicknesses at Nozzle to Shell Junction below design code requirements. This paper presents the Cost Effective fit for purpose approach utilizing advance Finite Element analysis to explore and recommend the solutions for existing numerous exchangers that are to be safely used even after reported low thickness on account of manufacturing imperfection. Methods, Procedures, Process (75 - 100 word) Reduction in Shell thickness below design value can affect its ability to sustain design pressure & vacuum including nozzle integrity for associated piping loads and service life reduction for exclusion of corrosion allowance. As short-term Mitigation methodology, weld overlay was adopted to restore the areas with lower thickness. For long term solution, fit for purpose review approach was adopted for continued usage of exchangers which involves nozzle load analysis using WRC & FEA based on PAUT thickness data and utilizing actual piping loads, derating of design pressure, comparison of thickness data to establish corrosion rate and service life of exchanger. Results, Observations & Conclusions (100 - 200 words) Thorough Integrity review based on design Code (ASME BPVC Section VIII) and WRC analysis have confirmed that majority of the exchangers have thickness higher than that required to sustain design pressure, vacuum conditions when considered with piping loads acting on nozzles. Thickness data comparison between three (03) year old manual UT and latest Phase array UT confirmed that majority of the exchangers are in clean non-corrosive service thus allowance for corrosion is not required. Where in the nature of exchanger service require corrosion allowance, it is considered in analysis and usage of stiffeners at nozzle to shell intersection and/or on full circumference of shell is recommended to prevent overstress due to piping loads / buckling distortion due to vacuum conditions respectively, based on detailed Finite element analysis (FEA). In order to establish more reliable long-term corrosion rate, next inspection after four (04) years is recommended and impact on integrity can be further evaluated based on the latest data. Change in exchanger nameplate is recommended to consider for design pressure as MAWP and accordingly adjust hydro test pressure followed by R-stamp requirements for rerating and repair. Shell side hydro test is restricted until recommendations are implemented Novel/Additive Information (25 - 75 words) Although conventional approach of replacing complete Shells to meet code requirement would have ensured process safety, performance and structural integrity. However, alternative fit for purpose approach utilizing advanced FEA has not only ensured all these but also led to potential cost saving of multimillion US$. Associated risks of thickness reduction due to corrosion may still be observed, however analysis confirmed structural integrity and safety of heat exchangers with low thicknesses. Accordingly, potential risk is mitigated.


Sign in / Sign up

Export Citation Format

Share Document