Effect of welding parameters (plunge depths of shoulder, pin geometry, and tool rotational speed) on the failure mode and stir zone characteristics of friction stir spot welded aluminum 2024-T3 sheets

2015 ◽  
Vol 29 (11) ◽  
pp. 4639-4644 ◽  
Author(s):  
Moslem Paidar ◽  
Alireza Khodabandeh ◽  
Mahsa Lali Sarab ◽  
Morteza Taheri
2017 ◽  
Vol 62 (3) ◽  
pp. 1819-1825
Author(s):  
V.C. Sinha ◽  
S. Kundu ◽  
S. Chatterjee

AbstractIn the present study, the effect of tool rotational speed on microstructure and mechanical properties of friction stir welded joints between commercially pure copper and 6351 Al alloy was carried out in the range of tool rotational speeds of 300-900 rpm in steps of 150 rpm at 30 mm/minutes travel speed. Up to 450 rpm, the interface of the joints is free from intermetallics and Al4Cu9intermetallic has been observed at the stir zone. However, Al4Cu9intermetallic was observed both at the interface and the stir zone at 600 rpm. At 750 and 900 rpm tool rotational speed, the layers of AlCu, Al2Cu3and Al4Cu9intermetallics were observed at the interface and only Al4Cu9intermetallics has been observed in the stir zone. The maximum ultimate tensile strength of ~207 MPa and yield strength of ~168 MPa along with ~6.2% elongation at fracture of the joint have been obtained when processed at 450 rpm tool rotational speed.


2011 ◽  
Vol 295-297 ◽  
pp. 1929-1932
Author(s):  
Yi Min Tu ◽  
Ran Feng Qiu ◽  
Hong Xin Shi ◽  
Xin Zhang ◽  
Ke Ke Zhang

In order to obtain better understanding of the friction stir weldability of the magnesium alloy and provide some foundational information for improving mechanical properties of retardant magnesium alloy joints. A retardant magnesium alloy was weld using the method of friction stir welding. The influence of welding parameters on the strength of the joint was investigated. The maximum strength of 230 MPa was obtained from the joint welded at the tool rotational speed of 1000 r/min and welding speed of 750 mm/min.


Author(s):  
Memduh Murtulmuş

Aluminum alloy Al 2024-T3 were successfully joined using friction stir spot jwelding joining (FSSW). Satisfactory joint strengths were obtained at different welding parameters (tool rotational speed, tool plunge depth, dwell time) and tool pin profile (straight cylindrical, triangular and tapered cylindrical). Resulting joints were welded with welded zone. The different tools significantly influenced the evolution on the stir zone in the welds. Lap-shear tests were carried out to find the weld strength. Weld cross section appearance observations were also done. The macrostructure shows that the welding parameters have a determinant effect on the weld strength (x: the nugget thickness, y: the thickness of the upper sheet and SZ: stir zone). The main fracture mode was pull out fracture modes in the tensile shear test of joints. The results of tensile shear tests showed that the tensile-shear load increased with increasing rotational speed in the shoulder penetration depth of 0.2 mm. Failure joints were obrerved in the weld high shoulder penetration depth and insufficient tool rotation.


2020 ◽  
Vol 62 (8) ◽  
pp. 793-802
Author(s):  
Şefika Kasman ◽  
Sertan Ozan

Abstract In the present study, AA 2024-T351 plates with a thickness of 6 mm were joined using the friction stir welding technique with three different tool rotational speeds and two different pin profiles. Microstructural features and mechanical properties of welded joints were investigated. The grains in recrystallized regions along the stir zone were observed to be almost with invariable sizes. The grain size was revealed to increase with the increase in tool rotational speed. The average grain size was observed to dramatically increase from 2.3 μm to 5.6 μm for welded joints produced with pentagonal shaped pin. All the welded joints were observed to contain defects; the presence of defects exhibited a negative effect on the tensile properties of the welded joint. Most of the defects were observed to localize at the root region of joints. The joint, welded with the tool rotational speed of 250 rpm using pentagonal shaped pin, exhibited ultimate tensile strength with a value of 365 MPa. The ultimate tensile strength of welded joints was found to be higher with the decrease in the tool rotational speed. The welding efficiency of joints was compared with the ultimate tensile strength of base metal; notably, welding efficiency values between 46 % and 80 % were achieved. Microstructural characterizations revealed that Al2Cu (θ phase), Al2CuMg (S phase), and AlCuFeMnSi, Al7Cu2Fe intermetallic particles were dispersed in the stir zone.


Author(s):  
Anganan K ◽  
Narendran RJ ◽  
Naveen Prabhu N ◽  
Rahul Varma R ◽  
Sivasubramaniyam R

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


Friction stir welding has proven to be the most promising solid state joining process. It can be used to get high weldability in joining of high strength aerospace aluminium alloys and other metallic alloys which used to be low with traditional fusion welding process. This paper emphasises on finding the optimum process parameter for friction stir welding of dissimilar aluminium alloy AA6061 to AA5183 using multi criteria decision making method (MCDM). Friction stir welding was done at different tool rotational speed and transverse velocity and mechanical properties such as tensile strength, percentage elongation and hardness were studied for each weld specimen. Finally optimization was done using TOPSIS (Techniqueof Ordered Preference by Similarity to Ideal Solution). The result revealed that the tool rotational speed of 1200 rpm and welding speed of 80mm/min are the optimum welding parameters.


Author(s):  
Velaphi Msomi ◽  
Busiswa Tracey Jantjies

Friction stir welding (FSW) is considered as the new joining technique which does not involve fumes like any traditional joining techniques. The attainment of good weld depends on proper combination of FSW parameters, and this combination varies with the materials that are being welded. The tool rotational speed is known as the most critical parameter towards the generation of heat required to produce the weld in friction stir welding. This parameter plays an important role in restructuring the stir zone. The variation of this parameter may yield certain results which are dependent on the type of materials being welded. This paper reports on the impact of the rotational speed variation on the tensile properties of AA6082-T6 joints. The rotational speed was varied while keeping all the other welding parameters constant. The analysis was performed comparatively on the specimens that were sampled from different locations of the joint. The joints produced through the rotational speed of 600 rpm showed good tensile properties compared to joints produced through other rotational speeds.


Author(s):  
K. Anganan ◽  
R.J . Narendran ◽  
N Naveen Prabhu ◽  
R Rahul Varma ◽  
R Sivasubramaniyam

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


Sign in / Sign up

Export Citation Format

Share Document