Numerical simulation and analysis of flow characteristics in the front chamber of a centrifugal pump

2017 ◽  
Vol 31 (11) ◽  
pp. 5131-5140 ◽  
Author(s):  
Yang Wu ◽  
Xiaoping Chen ◽  
Hua-Shu Dou ◽  
Lulu Zheng ◽  
Zuchao Zhu ◽  
...  
2015 ◽  
Vol 32 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Yu-Liang Zhang ◽  
Zu-Chao Zhu

AbstractTo study the influence of tip clearance on internal flow characteristics and external performance of a prototype centrifugal pump with a semi-open impeller, the unsteady numerical simulation and performance experiments are carried out in this paper. The evolution process of leakage vortex with time


Author(s):  
K M Guleren ◽  
A Pinarbasi

The main goal of the present work is to analyse the numerical simulation of a centrifugal pump by solving Navier-Stokes equations, coupled with the ‘standard k-∊’ turbulence model. The pump consists of an impeller having five curved blades with nine diffuser vanes. The shaft rotates at 890r/min. Flow characteristics are assumed to be stalled in the appropriate region of flowrate levels of 1.31-2.861/s. Numerical analysis techniques are performed on a commercial FLUENT package program assuming steady, incompressible flow conditions with decreasing flowrate. Under stall conditions the flow in the diffuser passage alternates between outward jetting when the low-pass-filtered pressure is high to a reverse flow when the filtered pressure is low. Being below design conditions, there is a consistent high-speed leakage flow in the gap between the impeller and the diffuser from the exit side of the diffuser to the beginning of the volute. Separation of this leakage flow from the diffuser vane causes the onset of stall. As the flowrate decreases both the magnitude of the leakage within the vaneless part of the pump and reverse flow within a stalled diffuser passage increase. As this occurs, the stall-cell size extends from one to two diffuser passages. Comparisons are made with experimental data and show good agreement.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199811
Author(s):  
Wu Xianfang ◽  
Du Xinlai ◽  
Tan Minggao ◽  
Liu Houlin

The wear-ring abrasion can cause performance degradation of the marine centrifugal pump. In order to study the effect of front and back wear-ring clearance on a pump, test and numerical simulation were used to investigate the performance change of a pump. The test results show that the head and efficiency of pump decrease by 3.56% and 9.62% respectively at 1.0 Qd due to the wear-ring abrasion. Under 1.0 Qd, with the increase of the front wear-ring the vibration velocity at pump foot increases from 0.4 mm/s to 1.0 mm/s. The axis passing frequency (APF) at the measuring points increases significantly and there appears new characteristic frequency of 3APF and 4APF. The numerical simulation results show that the front wear-ring abrasion affects the flow at the inlet of the front chamber of the pump and impeller passage. And the back wear-ring abrasion has obvious effect on the flow in the back chamber of the pump and impeller passage, while the multi-malfunction of the front wear-ring abrasion and back wear-ring abrasion has the most obvious effect on the flow velocity and flow stability inside pump. The pressure pulsation at Blade Passing Frequency (BPF) of the three schemes all decrease with the increase of the clearance.


2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


2016 ◽  
Vol 8 (10) ◽  
pp. 168781401667375 ◽  
Author(s):  
Wei Li ◽  
Xiaoping Jiang ◽  
Qinglong Pang ◽  
Ling Zhou ◽  
Wei Wang

Sign in / Sign up

Export Citation Format

Share Document