Gas Flow and Thermocapillary Effects on Fluid Flow Dynamics in a Horizontal Layer

2009 ◽  
Vol 21 (S1) ◽  
pp. 129-137 ◽  
Author(s):  
Olga N. Goncharova ◽  
Oleg A. Kabov
2021 ◽  
Vol 33 (1) ◽  
pp. 111-119
Author(s):  
M. I. Alamayreh ◽  
A. Fenocchi ◽  
G. Petaccia ◽  
S. Sibilla ◽  
E. Persi

Author(s):  
Arman Sadeghi ◽  
Abolhassan Asgarshamsi ◽  
Mohammad Hassan Saidi

Fluid flow and heat transfer at microscale have attracted an important research interest in recent years due to the rapid development of microelectromechanical systems (MEMS). Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this research, hydrodynamically and thermally fully developed laminar rarefied gas flow in annular microducts is studied using slip flow boundary conditions. Two different cases of the thermal boundary conditions are considered, namely: uniform temperature at the outer wall and adiabatic inner wall (Case A) and uniform temperature at the inner wall and adiabatic outer wall (Case B). Using the previously obtained velocity distribution, energy conservation equation subjected to relevant boundary conditions is numerically solved using fourth order Runge-Kutta method. The Nusselt number values are presented in graphical form as well as tabular form. It is realized that for the case A increasing aspect ratio results in increasing the Nusselt number, while the opposite is true for the case B. The effect of aspect ratio on Nusselt number is more notable at smaller values of Knudsen number, while its effect becomes slighter at large Knudsen numbers. Also increasing Knudsen number leads to smaller values of Nusselt number for the both cases.


Author(s):  
Manas Kumar Mondal ◽  
Govind Sharan Gupta ◽  
Shin-ya Kitamura ◽  
Nobuhiro Maruoka

Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process, in terms of installment cost, is in between the tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-? turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that the design of the snorkel affects the melt circulation of the bath significantly.


2021 ◽  
Author(s):  
Takashi Tarumi ◽  
Takayuki Yamabe ◽  
Marina Fukuie ◽  
David C. Zhu ◽  
Rong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document