Methods for measurement of fluid flow in closed conduits, using tracers. Measurement of gas flow

1980 ◽  
Keyword(s):  
Author(s):  
Arman Sadeghi ◽  
Abolhassan Asgarshamsi ◽  
Mohammad Hassan Saidi

Fluid flow and heat transfer at microscale have attracted an important research interest in recent years due to the rapid development of microelectromechanical systems (MEMS). Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this research, hydrodynamically and thermally fully developed laminar rarefied gas flow in annular microducts is studied using slip flow boundary conditions. Two different cases of the thermal boundary conditions are considered, namely: uniform temperature at the outer wall and adiabatic inner wall (Case A) and uniform temperature at the inner wall and adiabatic outer wall (Case B). Using the previously obtained velocity distribution, energy conservation equation subjected to relevant boundary conditions is numerically solved using fourth order Runge-Kutta method. The Nusselt number values are presented in graphical form as well as tabular form. It is realized that for the case A increasing aspect ratio results in increasing the Nusselt number, while the opposite is true for the case B. The effect of aspect ratio on Nusselt number is more notable at smaller values of Knudsen number, while its effect becomes slighter at large Knudsen numbers. Also increasing Knudsen number leads to smaller values of Nusselt number for the both cases.


Author(s):  
Manas Kumar Mondal ◽  
Govind Sharan Gupta ◽  
Shin-ya Kitamura ◽  
Nobuhiro Maruoka

Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process, in terms of installment cost, is in between the tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-? turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that the design of the snorkel affects the melt circulation of the bath significantly.


2017 ◽  
Vol 55 (6) ◽  
pp. 887-897 ◽  
Author(s):  
O. N. Goncharova ◽  
E. V. Rezanova ◽  
Yu. V. Lyulin ◽  
O. A. Kabov
Keyword(s):  
Gas Flow ◽  

2011 ◽  
Vol 233-235 ◽  
pp. 701-706
Author(s):  
Bing Tao Zhao ◽  
Yi Xin Zhang ◽  
Kai Bin Xiong

The numerical simulation of the fluid flow is presented by CFD technique to characterize the flow pattern of cyclone spray scrubber. In this process, the Reynolds-averaged Navier-Stokes equations with the Reynolds stress turbulence model (RSM) for fluid flow are solved by use of the finite volume method based on the SIMPLE pressure correction algorithm in the fluid computational domain. According to the computational results, the tangential velocity, axial velocity and turbulence intensity of the gas flow are addressed in the different flowrate. The results indicate that the CFD method can effectively reveal the mechanism of gas flow in the cyclone spray scrubber.


2020 ◽  
Author(s):  
Dominik Zbinden ◽  
Antonio Pio Rinaldi ◽  
Tobias Diehl ◽  
Stefan Wiemer

<p>Industrial projects that involve fluid injection into the deep underground (e.g., geothermal energy, wastewater disposal) can induce seismicity, which may jeopardize the acceptance of such geo-energy projects and, in the case of larger induced earthquakes, damage infrastructure and pose a threat to the population. Such earthquakes can occur because fluid injection yields pressure and stress changes in the subsurface, which can reactivate pre-existing faults. Many studies have so far focused on injection into undisturbed reservoir conditions (i.e., hydrostatic pressure and single-phase flow), while only very few studies consider disturbed <em>in-situ</em> conditions including multi-phase fluid flow (i.e., gas and water). Gas flow has been suggested as a trigger mechanism of aftershocks in natural seismic sequences and can play an important role at volcanic sites. In addition, the deep geothermal project in St. Gallen, Switzerland, is a unique case study where an induced seismic sequence occurred almost simultaneously with a gas kick, suggesting that the gas may have affected the induced seismicity.</p><p>Here, we focus on the hydro-mechanical modeling of fluid injection into disturbed reservoir conditions considering multi-phase fluid flow. We couple the fluid flow simulator TOUGH2 with different geomechanical codes to study the effect of gas on induced seismicity in general and in the case of St. Gallen. The results show that overpressurized gas can affect the size and timing of induced earthquakes and that it may have contributed to enhance the induced seismicity in St. Gallen. Our findings can lead to a more detailed understanding of the influence of a gas phase on the induced seismicity.</p>


2018 ◽  
Vol 180 ◽  
pp. 02052
Author(s):  
Martin Kyncl ◽  
Jaroslav Pelant

Here we work with the RANS equations describing the non-stationary viscous compressible fluid flow. We focus on the numerical simulation of the flow through the porous media, characterized by the loss of momentum. Further we simulate the flow through the set of diffusible barriers. Here we analyze the modification of the Riemann problem with one-side initial condition, complemented with the Darcy’s law and added inertial loss. We show the computational results obtained with the own-developed code for the solution of the compressible gas flow.


2012 ◽  
Vol 76 (8) ◽  
pp. 3165-3177 ◽  
Author(s):  
S. Sathar ◽  
H. J. Reeves ◽  
R. J. Cuss ◽  
J. F. Harrington

AbstractUnderstanding flow along fractures and faults is of importance to the performance assessment (PA) of a geological disposal facility (GDF) for radioactive waste. Flow can occur along pre-existing fractures in the host-rock or along fractures created during the construction of the GDF within the excavation damage zone (EDZ). The complex fracture network will have a range of orientations and will exist within a complex stress regime. Critical stress theory suggests that fractures close to localized shear failure are critically stressed and therefore most conductive to fluid flow. Analysis of fault geometry and stress conditions at Sellafield has revealed that no features were found to be, or even close to being, classified as critically stressed, despite some being conductive. In order to understand the underlying reasons why non-critically stressed fractures were conductive a series of laboratory experiments were performed. A bespoke angled shear rig (ASR) was built in order to study the relationship between fluid flow (water and gas) through a fracture surface as a function of normal load. Fluid flow reduced with an increase in normal load, as expected. During unloading considerable hysteresis was seen in flow and shear stress. Fracture flow was only partially recovered for water injection, whereas gas flow increased remarkably during unloading. The ratio of shear stress to normal stress seems to control the fluid flow properties during the unloading stage of the experiment demonstrating its significance in fracture flow. The exhumation of the Sellafield area during the Palaeogene–Neogene resulted in considerable stress relaxation and in fractures becoming non-critically stressed. The hysteresis in shear stress during uplift has resulted in faults remaining, or becoming, conductive. The field and laboratory observations illustrate that understanding the stress-history of a fractured rock mass is essential, and a mere understanding of the current stress regime is insufficient to estimate the flow characteristics of present-day fractures.


2013 ◽  
Vol 20 (3) ◽  
pp. 311-327 ◽  
Author(s):  
J. C. Guo ◽  
R. S. Nie

Abstract. Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water). The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.


Sign in / Sign up

Export Citation Format

Share Document