Preparation of jujube-cake structure membranes through in situ polymerization of hyperbranched polysiloxane in ethylene-vinyl acetate matrix for separation of ethyl acetate from water

RSC Advances ◽  
2016 ◽  
Vol 6 (22) ◽  
pp. 18308-18318 ◽  
Author(s):  
Chun-fang Zhang ◽  
Guo-liang Wu ◽  
Liang-liang Dong ◽  
Jun Tang ◽  
Yun-xiang Bai ◽  
...  

The addition of hyperbranched polysiloxane (HPSiO) could improve the hydrophobic of the membranes which is helpful to recover EA from water.

Author(s):  
Andrey Acosta ◽  
Ezequiel Gallio ◽  
Paula Zanatta ◽  
Henrique Schulz ◽  
Rafael de Avila Delucis ◽  
...  

2019 ◽  
Vol 19 (11) ◽  
pp. 7476-7486
Author(s):  
Jinze Du ◽  
Hongyan Zeng ◽  
Enguo Zhou ◽  
Bo Feng ◽  
Chaorong Chen ◽  
...  

The microcapsule nanoparticles were prepared by in-situ copolymerization of hydrotalcites (MAH) with the polymer (MF, PF, PS and PU) monomers, respectively, where the MF-wrapped MAH (MAH@MF) had the best monodispersity. The composites of the microcapsules and EVA were prepared by incorporating the microcapsule nanoparticles into ethylene vinyl acetate (EVA), respectively. To further understand the intrinsic correlation between microcapsule fillers and EVA matrix, molecular dynamics (MD) simulation was introduced to qualitatively analyze the contribution of microcapsule fillers on improving compatibility and mechanical properties of the EVA matrix. The compatibility of microcapsule nanoparticles with EVA matrix were detected in sequence through SEM, DSC and tensile strength tests. And the combustion, thermal behavior and flame retardance were also characterized by TG analyses as well as LOI and UL-94 level. As a result, the MAH@MF filler had the best performances in improving the flame retardancy and mechanical properties among the microcapsule fillers, attributed to high compatibility of the MAH@MF and EVA matrix, which made uniform distribution of the MAH@MF filler due to the reciprocity of triazine functional ring with vinyl acetate linkages.


2013 ◽  
Vol 34 (3) ◽  
pp. 354-358 ◽  
Author(s):  
Matthew J. Bachus ◽  
Wolfgang U. Spendel ◽  
William H. Steinecker ◽  
Stanley G. Prybyla ◽  
Gilbert E. Pacey

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1651 ◽  
Author(s):  
Saisai Huang ◽  
Qiufang Jiang ◽  
Bin Yu ◽  
Yujing Nie ◽  
Zhongqing Ma ◽  
...  

Acetylation and in situ polymerization are two typical chemical modifications that are used to improve the dimensional stability of bamboo. In this work, the combination of chemical modification of vinyl acetate (VA) acetylation and methyl methacrylate (MMA) in situ polymerization of bamboo was employed. Performances of the treated bamboo were evaluated in terms of dimensional stability, wettability, thermal stability, chemical structure, and dynamic mechanical properties. Results show that the performances (dimensional stability, thermal stability, and wettability) of bamboo that was prepared via the combined pretreatment of VA and MMA (VA/MMA-B) were better than those of raw bamboo, VA single-treated bamboo (VA-B), and MMA single-treated bamboo (MMA-B). According to scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses, VA and MMA were mainly grafted onto the surface of the cell wall or in the bamboo cell lumen. The antiswelling efficiency and contact angle of VA/MMA-B increased to maximum values of 40.71% and 107.1°, respectively. From thermogravimetric analysis (TG/DTG curves), the highest onset decomposition temperature (277 °C) was observed in VA/MMA-B. From DMA analysis, the storage modulus (E’) of VA/MMA-B increased sharply from 15,057 Pa (untreated bamboo) to 17,909 Pa (single-treated bamboo), and the glass transition temperature was improved from 180 °C (raw bamboo) to 205 °C (single-treated bamboo).


2019 ◽  
Vol 136 (21) ◽  
pp. 47557 ◽  
Author(s):  
Shanshan Luo ◽  
Jing Sun ◽  
Anrong Huang ◽  
Tingting Zhang ◽  
Liangqiang Wei ◽  
...  

2015 ◽  
Vol 1718 ◽  
pp. 21-26
Author(s):  
Allen D. Winter ◽  
Cherno Jaye ◽  
Daniel Fischer ◽  
Maria Omastová ◽  
Eva M. Campo

AbstractIn situ temperature-resolved Near-edge X-ray Absorption Fine Structure (NEXAFS) measurements were performed on thermo-active ethylene-vinyl acetate (EVA) – multiwall carbon nanotube (MWCNT) composites 12 months following synthesis, and compared with spectra acquired shortly after synthesis to examine aging effects on non-covalent interactions. Room temperature spectra revealed no difference between unstrained and strained composites, suggesting relaxation. Further, energy shifts in π* C=C resonances indicated a change in π–π interactions between MWCNT walls and chemical dispersant, supported also by AFM phase imaging. Temperature-resolved NEXAFS analysis showed a lack of interaction between nanotubes and polymeric chains, suggesting the chemical dispersant unlatched from MWCNT walls. The extent of this effect is finally quantified through a comparative study of spectral trends.


Sign in / Sign up

Export Citation Format

Share Document