Correlation Between Environmental Factors, a Life History Trait, Phenotypic Cohesion, and Gene Flow Levels in Natural Populations of Micropogonias furnieri: Is Salinity the Main Factor Driving Divergence?

2017 ◽  
Vol 40 (6) ◽  
pp. 1717-1731 ◽  
Author(s):  
Alejandro D’Anatro
2014 ◽  
Author(s):  
Christina Zakas ◽  
Matthew V Rockman

The marine polychaeteStreblospio benedictiexhibits two distinct larval types, making it a model for the study of developmental evolution. Females produce either large eggs or small ones, which develop into distinct lecithotrophic or planktotrophic larvae with concomitant morphological and life-history differences. Here, we investigate the inheritance of key morphological traits that distinguish the larval types. We use genetic crosses to establish the influence of maternal and zygotic differences on larval phenotypes. We find a large maternal effect on larval size and the number of larval chaetae, while the number and length of these chaetae are also strongly influenced by zygotic genotype. Interestingly, the distribution of larval phenotypes produced by these crosses suggests traits intermediate to the two parental types should not be uncommon. Yet, despite gene flow between the types in natural populations, such intermediates are rarely found in nature, suggesting that selection may be maintaining distinct larval modes.


2010 ◽  
Vol 67 (9) ◽  
pp. 1449-1458 ◽  
Author(s):  
Donald M. Van Doornik ◽  
Barry A. Berejikian ◽  
Lance A. Campbell ◽  
Eric C. Volk

Conservation hatcheries, which supplement natural populations by removing adults or embryos from the natural environment and rearing and releasing parr, smolts, or adults back into their natal or ancestral streams, are increasingly being used to avoid extinction of localized populations of Pacific salmonids. We collected data before and during a steelhead ( Oncorhynchus mykiss ) supplementation program to investigate the effect that the program has had on the population’s genetic diversity and effective population size and any changes to an important life history trait (residency or anadromy). We found that supplementation did not cause substantial changes in the genetic diversity or effective size of the population, most likely because a large proportion of all of the steelhead redds in the river each year were sampled to create the supplementation broodstock. Our data also showed that the captively reared fish released as adults successfully produced parr. Furthermore, we found that during supplementation, there was an increase in the proportion of O. mykiss with anadromous ancestry vs. resident ancestry.


2018 ◽  
Author(s):  
Alexandre Vong ◽  
Armelle Ansart ◽  
Maxime Dahirel

AbstractDispersal, i.e. movement leading to gene flow, is a fundamental although costly life history trait. The use of indirect social information may help mitigate these costs, yet in many cases little is known about the proximate sources of such information, and how dispersers and residents may differ in their information use. Land gastropods, which have a high cost of movement and obligatorily leave information potentially exploitable by conspecifics during movement (through mucus trails), are a good model to investigate links between dispersal costs and information use. We used Y-mazes to see whether dispersers and residents differed in their trail-following propensity, in the snail Cornu aspersum. Dispersers followed mucus trails more frequently than expected by chance, contrary to non-dispersers. Ignoring dispersal status during tests would lead to falsely conclude to no trail-following for the majority of ecologically realistic scenarios. Trail following by dispersers may reduce dispersal costs by reducing energy expenditure and helping snails find existing patches. Finally, we point that ignoring the potential for collective dispersal provided by trail-following abilities may lead to wrong inferences on the demographic and genetic consequences of dispersal.


2018 ◽  
Author(s):  
Flore Zélé ◽  
Joaquim L. Santos ◽  
Diogo Prino Godinho ◽  
Sara Magalhães

AbstractIn the last decades, many studies had revealed the potential role of arthropod bacterial endosymbionts in shaping the host range of generalist herbivores and their performance on different host plants, which, in turn, might affect endosymbiont distribution in herbivores populations. We tested this by measuring the prevalence of endosymbionts in natural populations of the generalist spider mite Tetranychus urticae on different host plants. Focusing on Wolbachia, we then analysed how symbionts affected mite life-history traits on the same host-plants in the laboratory. Overall, the prevalences of Cardinium and Rickettsia were low, whereas that of Wolbachia was high, with the highest values on bean and eggplant and the lowest on purple, tomato and zuchini. Although most mite life-history traits were affected by the plant species only, Wolbachia infection was detrimental for egg hatching rate on purple and zucchini, and led to a more female-biased sex ratio on purple and eggplant. These results suggest that endosymbionts may affect the host range of polyphagous herbivores, both by aiding and hampering their performance, depending on the host plant and on the life-history trait that affects performance the most. Conversely, endosymbiont spread may be facilitated or hindered by the plants on which infected herbivores occur.


Author(s):  
Andrew P. Hendry

This chapter begins with a description of how natural selection works and how it is studied in natural populations. It draws on recent meta-analyses to answer fundamental questions about selection in nature, such as how strong and consistent it is, how often it is stabilizing (disfavoring extreme individuals) or disruptive (favoring extreme individuals), what types of traits (e.g., life history or morphology) are under the strongest selection, and how selection differs when fitness is indexed as mating success (sexual selection) or survival/fecundity (natural selection). The chapter also examines selection within “populations,” which are considered to be conspecific groups of individuals within which interbreeding is common (close to panmixia) but among which interbreeding (and therefore gene flow) is restricted.


2017 ◽  
Author(s):  
Jing Wang ◽  
Jihua Ding ◽  
Biyue Tan ◽  
Kathryn M. Robinson ◽  
Ingrid H. Michelson ◽  
...  

AbstractBackgroundThe initiation of growth cessation and dormancy represent critical life-history tradeoffs between survival and growth, and have important fitness effects in perennial plants. Such adaptive life history traits often show strong local adaptation along environmental gradients but despite their importance, the genetic architecture of these traits remains poorly understood.ResultsWe integrate whole genome re-sequencing with environmental and phenotypic data from common garden experiments to investigate the genomic basis of local adaptation across a latitudinal gradient in European aspen (Populus tremula). We discover a single genomic region containing the PtFT2 gene that mediates local adaptation in the timing of bud set and that explains 65% of the observed genetic variation in bud set. This locus is the likely target of a recent selective sweep that originated right before or during colonization of northern Scandinavia following the last glaciation. Field and greenhouse experiments confirm that variation in PtFT2 gene expression affect the phenotypic variation in bud set that we observe in wild natural populations.ConclusionsOur results reveal a major effect locus that determine the timing of bud set and that have facilitated rapid adaptation to shorter growing seasons and colder climates in European aspen. The discovery of a single locus explaining a substantial fraction of the variation in a key life history trait is remarkable given that such traits are generally considered to be highly polygenic. These findings provide a dramatic illustration of how loci of large-effect for adaptive traits can arise and be maintained over large geographical scales in natural populations.


2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.


Author(s):  
Gaotian Zhang ◽  
Jake D Mostad ◽  
Erik C Andersen

Abstract Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g. a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. Additionally, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.


Sign in / Sign up

Export Citation Format

Share Document