scholarly journals An In Vitro and In Vivo Evaluation of Tensile Strength and Durability of Seven Suture Materials in Various pH and Different Conditions: An Experimental Study in Rats

2010 ◽  
Vol 72 (5) ◽  
pp. 386-390 ◽  
Author(s):  
Ramazan Karabulut ◽  
Kaan Sonmez ◽  
Zafer Turkyilmaz ◽  
Barıs Bagbanci ◽  
A. Can Basaklar ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Rajni Bala ◽  
Sushil Khanna ◽  
Pravin Pawar

Clobazam orally dissolving strips were prepared by solvent casting method. A full 32 factorial design was applied for optimization using different concentration of film forming polymer and disintegrating agent as independent variable and disintegration time, % cumulative drug release, and tensile strength as dependent variable. In addition the prepared films were also evaluated for surface pH, folding endurance, and content uniformity. The optimized film formulation showing the maximum in vitro drug release, satisfactory in vitro disintegration time, and tensile strength was selected for bioavailability study and compared with a reference marketed product (frisium5 tablets) in rabbits. Formulation (F6) was selected by the Design-expert software which exhibited DT (24 sec), TS (2.85 N/cm2), and in vitro drug release (96.6%). Statistical evaluation revealed no significant difference between the bioavailability parameters of the test film (F6) and the reference product. The mean ratio values (test/reference) of Cmax (95.87%), tmax (71.42%), AUC0−t (98.125%), and AUC0−∞ (99.213%) indicated that the two formulae exhibited comparable plasma level-time profiles.


Author(s):  
Khanderao Jadhav ◽  
Shivraj Jadhav ◽  
Deepak Sonawane ◽  
Deepak Somvanshi ◽  
Hina Shah ◽  
...  

The objective of the current work is to formulate and evaluate the mouth dissolving film of domperidone. It is ideally suitable for the treatment of emesis. The mouth dissolving film of domperidone is useful in the vomiting through the journey. Mouth dissolving films were formulated by the solvent casting technique and its in-vitro as well as the in-vivo evaluation was done by the usual pharmacopoeial and unofficial tests and by using human volunteers. The main benefit of the preparation technique includes fewer operation units, better content consistency. The mouth dissolving film formed was found to be disintegrated in 1 minute. The ratio of components in the aqueous phase affected the thickness, drug content, tensile strength, percentage elongation, folding endurance, and release profile of mouth dissolving film and the best results were obtained for the HPMC E15 and polyethyleneglycol. The compatibility between domperidone and excipients was confirmed by FTIR and DSC studies. The developed mouth dissolving film of domperidone demonstrated usefulness for fast release of drug in mouth, for better drug utilization, and improved patient compliance. The optimized formulation, due to low HPMC E15 content, has optimum tensile strength and thickness. Formulation F8 containing HPMC E15 and PG showed a cumulative % drug release of 95.10 at the end of 12 minutes. HPMC E15 films showed higher cumulative % drug release than films of other HPMC E grades at different concentrations. It was found to be stable during the accelerated stability study. The effect of different concentrations of polymers and plasticizers on in-vitro evaluation parameters was evaluated. Hence, data showed that formulation F8 was the most suitable for the development of fast dissolving oral films of domperidone.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hala Mohamed El-Mofty ◽  
Mohamad Amr Salah Eddin Abdelhakim ◽  
Mohamed Farid El-Miligi ◽  
Mohamed A. El-Nabarawi ◽  
Islam Ahmed Hamed Khalil

Objective. To formulate and evaluate slow release ketoconazole and ketorolac to treat fungal keratitis and associated inflammation.Methods. Experimental study with the following outcome measures.Pharmaceutical Evaluation. Mucoadhesive gels containing ketoconazole and ketorolac were used.Microbiological in vitroevaluationwas performed using cup method.In vivo evaluationwas performed on 24 rabbits divided into 2 groups, 12 rabbits each, group A (fast release formula; 6 times daily) and group B (slow release formula; 3 times daily). Each group was divided into two subgroups (6 rabbits each). Both eyes of rabbits were inoculated withCandida albicans. The left eye of all rabbits received the combination formulae. The right eye for one subgroup received ketoconazole as control 1 while the other subgroup received placebo as control 2. Clinical follow-up was done and, finally, the corneas were used for microbiological and pathological evaluation.Results. Gels containing high polymer concentration showed both high viscosity and mucoadhesion properties with slower drug release. The infected eyes treated with slow release formula containing both drugs showed better curing of the cornea and pathologically less inflammation than eyes treated with fast release formula.Conclusion. Slow release formula containing ketoconazole and ketorolac showed higher activity than fast release formula against fungal keratitis and associated inflammation.


2017 ◽  
Vol 67 (3) ◽  
pp. 325-339
Author(s):  
Rajan Rajabalaya ◽  
Chung Yee Mun ◽  
Jestin Chellian ◽  
Srikumar Chakravarthi ◽  
Sheba R. David

AbstractThe purpose of the study was to develop a transdermal tolterodine tartrate (TT) patch and to analyse its efficacy for overactive bladder (OAB) treatment. Patches were prepared using various polymers and plasticizersviathe solvent casting method. The patches were characterized for tensile strength, thickness, moisture content, modulus of elasticity and water absorption capacity. Differential scanning calorimetry and Fourier transform infrared analyses were also performed. To determine patch effectiveness,in vitrorelease, permeation and animal studies were performed. The patches showed satisfactory percentage of release, up to 89.9 %, and their mechanical properties included thickness (0.10–0.15 mm), tensile strength (4.62–9.98 MPa) and modulus of elasticity (20–29 MPa). There were no significant interactions between TT and other excipients. Animal studies indicated that the TT patch reduced the incidence of side effects; however, studies of longer duration are required to determine the effectiveness in treating OAB.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Bauer ◽  
F Dehm ◽  
A Koeberle ◽  
F Pollastro ◽  
G Appendino ◽  
...  

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Sign in / Sign up

Export Citation Format

Share Document