scholarly journals Funktion rätselhafter Retrons entschlüsselt

BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 355-357
Author(s):  
Jacob Bobonis ◽  
Karin Mitosch ◽  
Athanasios Typas

AbstractVAAM-Forschungspreis 2021Bacterial retrons are operons containing reverse transcriptases. Despite three decades of research, their physiological role remained mysterious. Recently, retrons have been uncovered as a widespread novel class of antiphage defense systems. We here discuss how high-throughput reverse genetics have enabled this discovery, illustrating the power such approaches have to illuminate the function of uncharacterized genes.

Author(s):  
Jacob Bobonis ◽  
Karin Mitosch ◽  
André Mateus ◽  
George Kritikos ◽  
Johanna R. Elfenbein ◽  
...  

ABSTRACTBacteria carry dozens of Toxin/Antitoxin systems (TAs) in their chromosomes. Upon growth, the antitoxin is co-expressed and neutralizes the toxin. TAs can be activated and inhibit growth, but when and how this occurs has largely remained enigmatic, hindering our understanding of their physiological roles. We developed TIC/TAC (Toxin Inhibition/Activation Conjugation), a high-throughput reverse genetics approach, to systematically identify molecular blockers and triggers of TAs. By applying TIC/TAC to a tripartite TA, the retron-Sen2 of Salmonella Typhimurium, we have identified multiple blockers and triggers of phage origin. We demonstrate that diverse phage functionalities are sensed by the DNA-part of the antitoxin and ultimately activate the retron toxin. Phage-origin proteins can circumvent activation by directly blocking the toxin. Some identified triggers and blockers also act on an E. coli retron-TA, Eco9. We propose that retron-TAs act as abortive-infection anti-phage defense systems, and delineate mechanistic principles by which phages trigger or block them.


2016 ◽  
Vol 17 (6) ◽  
pp. 460-475 ◽  
Author(s):  
Anis Ben-Amar ◽  
Samia Daldoul ◽  
Götz M. Reustle ◽  
Gabriele Krczal ◽  
Ahmed Mliki

2019 ◽  
Author(s):  
Reneth Millas ◽  
Mary Espina ◽  
CM Sabbir Ahmed ◽  
Angelina Bernardini ◽  
Ekundayo Adeleke ◽  
...  

ABSTRACTOne of the most important tools in genetic improvement is mutagenesis, which is a useful tool to induce genetic and phenotypic variation for trait improvement and discovery of novel genes. JTN-5203 (MG V) mutant population was generated using an induced ethyl methane sulfonate (EMS) mutagenesis and was used for detection of induced mutations in FAD2-1A and FAD2-1B genes using reverse genetics approach. Optimum concentration of EMS was used to treat 15,000 bulk JTN-5203 seeds producing 1,820 M2 population. DNA was extracted, normalized, and pooled from these individuals. Specific primers were designed from FAD2-1A and FAD2-1B genes that are involved in the fatty acid biosynthesis pathway for further analysis using next-generation sequencing. High throughput mutation discovery through TILLING-by-Sequencing approach was used to detect novel allelic variations in this population. Several mutations and allelic variations with high impacts were detected for FAD2-1A and FAD2-1B. This includes GC to AT transition mutations in FAD2-1A (20%) and FAD2-1B (69%). Mutation density for this population is estimated to be about 1/136kb. Through mutagenesis and high-throughput sequencing technologies, novel alleles underlying the mutations observed in mutants with reduced polyunsaturated fatty acids will be identified, and these mutants can be further used in breeding soybean lines with improved fatty acid profile, thereby developing heart-healthy-soybeans.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 655 ◽  
Author(s):  
Yíngyún Caì ◽  
Masaharu Iwasaki ◽  
Brett Beitzel ◽  
Shuīqìng Yú ◽  
Elena Postnikova ◽  
...  

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000–300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


2020 ◽  
Vol 7 ◽  
Author(s):  
Fuxiao Liu ◽  
Qianqian Wang ◽  
Yilan Huang ◽  
Ning Wang ◽  
Youming Zhang ◽  
...  

Canine distemper virus (CDV), belonging to the genus Morbillivirus in the family Paramyxoviridae, is a highly contagious pathogen, affecting various domestic, and wild carnivores. Conventional methods are too cumbersome to be used for high-throughput screening of anti-CDV drugs. In this study, a recombinant CDV was rescued using reverse genetics for facilitating screening of anti-CDV drug in vitro. The recombinant CDV could stably express the NanoLuc® luciferase (NLuc), a novel enzyme that was smaller and “brighter” than others. The intensity of NLuc-catalyzed luminescence reaction indirectly reflected the anti-CDV effect of a certain drug, due to a positive correlation between NLuc expression and virus propagation in vitro. Based on such a characteristic feature, the recombinant CDV was used for anti-CDV assays on four drugs (ribavirin, moroxydine hydrochloride, 1-adamantylamine hydrochloride, and tea polyphenol) via analysis of luciferase activity, instead of via conventional methods. The result showed that out of these four drugs, only the ribavirin exhibited a detectable anti-CDV effect. The NLuc-tagged CDV would be a rapid tool for high-throughput screening of anti-CDV drugs.


Cilia ◽  
2012 ◽  
Vol 1 (S1) ◽  
Author(s):  
K Szymanska ◽  
G Wheway ◽  
S Natarajan ◽  
J Higgins ◽  
M Adams ◽  
...  

2016 ◽  
Vol 44 (5) ◽  
pp. 1385-1393 ◽  
Author(s):  
Veronica Dezi ◽  
Chavdar Ivanov ◽  
Irmgard U. Haussmann ◽  
Matthias Soller

Modified nucleotides in messenger RNA (mRNA) have been discovered over 40 years ago, but until recently little was known about which transcripts contain them and what their function is. High-throughput sequencing approaches revealed a dynamic landscape of the ‘Epitranscriptome’ for many mRNA modifications in various organisms from yeast to humans. Meanwhile, also many genes encoding mRNA-modifying enzymes and auxiliary proteins have been identified yielding functional insights by reverse genetics into their role in development and disease.


Sign in / Sign up

Export Citation Format

Share Document