scholarly journals Jagd auf den Adlermörder — Entdeckung eines neuen Cyanotoxins

BIOspektrum ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 594-597
Author(s):  
Steffen Breinlinger ◽  
Timo H. J. Niedermeyer

AbstractHunting down the eagle killer: Vacuolar myelinopathy is a neurological disease affecting wildlife — including the iconic bald eagle — in the United States. Its cause has been elusive for decades, but its occurrence has been linked to the cyanobacterium Aetokthonos hydrillicola colonizing the invasive aquatic plant Hydrilla verticillata. In a recent study, we found that A. hydrillicola produces a novel highly toxic biindole alkaloid (aetokthonotoxin), and proved that it is causing the disease.

EDIS ◽  
2017 ◽  
Vol 2017 (2) ◽  
Author(s):  
Lyn A. Gettys ◽  
Stephen F. Enloe

East Indian hygrophila, also known as Miramar weed, Indian swampweed, and hygro, is an invasive aquatic plant that grows under submersed and emergent conditions. The species is a federally listed noxious weed and a Florida Class II prohibited aquatic plant. East Indian hygrophila was first introduced to the United States as an aquarium plant around 1945. The first recorded sighting of East Indian hygrophila in Florida occurred near Tampa in 1965; by 1980, it had become a weed problem in southern Florida canals, and by 1994 it had spread to 18 of Florida’s public water bodies. This paper outlines the biology, ecology, invasion characteristics and environmental impacts of  East Indian hygrophila and and management of this noxious weed.


Science ◽  
2021 ◽  
Vol 371 (6536) ◽  
pp. eaax9050
Author(s):  
Steffen Breinlinger ◽  
Tabitha J. Phillips ◽  
Brigette N. Haram ◽  
Jan Mareš ◽  
José A. Martínez Yerena ◽  
...  

Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata. Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola. We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors—especially bromide availability—that promote toxin production.


2017 ◽  
Vol 81 (4) ◽  
pp. 479-484 ◽  
Author(s):  
Clifton L. Gooch ◽  
Etienne Pracht ◽  
Amy R. Borenstein

2010 ◽  
Vol 3 (3) ◽  
pp. 262-267 ◽  
Author(s):  
Ryan M. Wersal ◽  
John D. Madsen

AbstractParrotfeather is an invasive, aquatic plant in the United States that is native to South America. It has impaired the use of water bodies throughout the United States and is difficult to control, despite using a variety of management techniques. Our objectives were to examine the efficacy of subsurface applications of seven herbicides labeled for aquatic use and to compare those applications to herbicides that can also be applied to emergent foliage. A replicated mesocosm study was conducted in 378-L (100-gal) tanks beginning in August 2007 and repeated during the same period in 2008. The maximum and half-maximum labeled rates of copper chelate, diquat, endothall, fluridone, triclopyr, and carfentrazone-ethyl were applied to the water column in designated mesocosms. The maximum labeled rate for foliar applications of diquat, triclopyr, and 2,4-D were used to compare treatment methods. Six weeks after treatment (WAT), copper, endothall, fluridone, and carfentrazone-ethyl did not achieve 90% control; in fact, control was less than 50% for each herbicide, and therefore, the herbicides were not considered efficacious for controlling parrotfeather. Diquat at all rates and application methods resulted in 70 to 90% biomass reduction. Triclopyr, with both the highest aqueous concentration and foliar application, resulted in an 84 and 86%, respectively, reduction in biomass at 6 WAT. The foliar application of 2,4-D was the only herbicide and application method that resulted in ≥ 90% biomass reduction of parrotfeather. In these studies, regrowth occurred in all tanks regardless of herbicide or treatment method, indicating multiple applications would be necessary to provide longer-term plant control. Future research should identify possible herbicide combinations or timing of applications to maximize treatment efficacy.


Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 441-445 ◽  
Author(s):  
Atul Puri ◽  
Gregory E. MacDonald ◽  
William T. Haller ◽  
Megh Singh

Hydrilla is one of the most serious aquatic weed problems in the United States, and fluridone is the only U.S. Environment Protection Agency (USEPA)–approved herbicide that provides relatively long-term systemic control. Recently, hydrilla biotypes with varying levels of fluridone resistance have been documented in Florida. Several biotypes of hydrilla varying in resistance levels were maintained in 950-L tanks under ambient sunlight and day-length conditions from September 2004 to September 2005 in absence of fluridone. Phenotypic measurements were performed during this 1-yr period to monitor differences in growth and reproductive physiology. All fluridone-resistant biotypes (except R3) were growing at the same rate or greater than the susceptible hydrilla. These data suggested that there are no deleterious effects on growth and reproductive physiology because of development of fluridone resistance. Aggressive spread of fluridone-resistant dioecious hydrilla in aquatic ecosystems can severely affect hydrilla management and, consequently, cause substantial and long-lasting ecological and economic problems throughout the southern United States.


EDIS ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 5
Author(s):  
Eutychus Kariuki ◽  
Carey Minteer

Sometimes referred to as the ‘mottled water hyacinth weevil’, Neochetina eichhorniae Warner is a weevil that attacks the invasive, aquatic plant, water hyacinth, Eichhornia crassipes (Mart.) Solms. Water hyacinth is considered one of the most destructive plants in aquatic ecosystems in the United States and, as a result, is listed in both the federal noxious weed list and Florida’s list of prohibited aquatic plants. Neochetina eichhorniae is host specific and causes substantial damage to water hyacinth, making it a valuable biological control agent for this invasive weed in many parts of the world. The insect was first introduced into the United States from Argentina in 1972, when scientists released the insect in Broward County, Florida, to manage water hyacinth (Perkins 1973). Since then, the insect has been introduced in more than three dozen countries worldwide (Winston et al. 2014). Post-introduction studies indicate the insect substantially suppresses the growth of water hyacinth, significantly reducing biomass, flowers production, and water surface coverage (Grodowitz et al. 1991, Center et al. 1999, Tipping et al. 2014, Nesslage et al. 2016) and the need for herbicide applications (Haag 1986).


2014 ◽  
Vol 19 (44) ◽  
Author(s):  
M Lang ◽  
A Mirand ◽  
N Savy ◽  
C Henquell ◽  
S Maridet ◽  
...  

Human enterovirus D68 (EV-D68) is known to be associated with mild to severe respiratory infections. Recent reports in the United States and Canada of acute flaccid paralysis (AFP) in children with detection of EV-D68 in respiratory samples have raised concerns about the aetiological role of this EV type in severe neurological disease. This case study is the first report of AFP following EV-D68 infection in Europe.


EDIS ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. 6
Author(s):  
Eutychus Kariuki ◽  
Carey Minteer

Neochetina bruchi Hustache is commonly referred to as the chevroned water hyacinth weevil and is a weed biological control agent used to manage water hyacinth, Pontederia crassipes Mart. [formely Eichhornia crassipes (Mart.) Solms (Pellegrini et al. 2018)], in more than 30 countries (Winston et al. 2014). Imported from Argentina, the insect was first introduced into the United States in Florida in 1974 and released in Louisiana later in 1974 (Manning 1979), Texas 1980, and California 1982 to 1983 (Winston et al. 2014). Now Neochetina bruchi occurs throughout the Gulf Coast States (Winston et al. 2014). The target weed of Neochetina bruchi, water hyacinth, is an invasive aquatic plant in the United States and is included on Florida’s list of prohibited aquatic plants. Neochetina bruchi is among four species of insect biological control agents that have been introduced into the United States to manage water hyacinth. The other three species include a weevil, Neochetina eichhorniae; a moth, Niphograptaalbiguttalis; and a planthopper, Megamelus scutellaris, which were introduced into the United States in 1972, 1977, and 2010, respectively (Tipping et al. 2014). Although the larvae and pupae of Neochetina bruchi and Neochetina eichhorniae have similar appearance and behavior and can be difficult to differentiate by casual observation (Deloach and Cordo 1976), the adult stages of the two species of water hyacinth weevils can be distinguished relatively easily based on the color patterns on their elytra (hardened fore wings).


Sign in / Sign up

Export Citation Format

Share Document