Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly

Nano Research ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 2193-2209 ◽  
Author(s):  
Zili Xu ◽  
Chuansheng Zhuang ◽  
Zhijuan Zou ◽  
Jingyu Wang ◽  
Xiaochan Xu ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 14027-14033 ◽  
Author(s):  
Zhijun Huang ◽  
Fengbo Li ◽  
Bingfeng Chen ◽  
Guoqing Yuan

Nanostructured g-C3N4 with high surface area from heat treatment of guanidinium cyanurate exhibits better optical properties and enhanced photocatalytic activity.


2019 ◽  
Vol 7 (10) ◽  
pp. 5324-5332 ◽  
Author(s):  
Mao Wu ◽  
Yansheng Gong ◽  
Tao Nie ◽  
Jin Zhang ◽  
Rui Wang ◽  
...  

Nanocage-like 3D porous graphitic carbon nitride (g-C3N4) with a high surface area and nitrogen defects was successfully prepared via a novel, template-free, cost-effective and hydrothermal-copolymerization route.


2020 ◽  
Vol 21 ◽  
pp. 100774
Author(s):  
Caique Prado Machado de Oliveira ◽  
Ana Luísa Almeida Lage ◽  
Dayse Carvalho da Silva Martins ◽  
Nelcy Della Santina Mohallem ◽  
Marcelo Machado Viana

Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 169 ◽  
Author(s):  
Faryal Idrees ◽  
Ralf Dillert ◽  
Detlef Bahnemann ◽  
Faheem Butt ◽  
Muhammad Tahir

This work focuses on the synthesis of heterostructures with compatible band positions and a favourable surface area for the efficient photocatalytic production of molecular hydrogen (H2). In particular, 3-dimensional Nb2O5/g-C3N4 heterostructures with suitable band positions and high surface area have been synthesized employing a hydrothermal method. The combination of a Nb2O5 with a low charge carrier recombination rate and a g-C3N4 exhibiting high visible light absorption resulted in remarkable photocatalytic activity under simulated solar irradiation in the presence of various hole scavengers (triethanolamine (TEOA) and methanol). The following aspects of the novel material have been studied systematically: the influence of different molar ratios of Nb2O5 to g-C3N4 on the heterostructure properties, the role of the employed hole scavengers, and the impact of the co-catalyst and the charge carrier densities affecting the band alignment. The separation/transfer efficiency of the photogenerated electron-hole pairs is found to increase significantly as compared to that of pure Nb2O5 and g-C3N4, respectively, with the highest molecular H2 production of 110 mmol/g·h being obtained for 10 wt % of g-C3N4 over Nb2O5 as compared with that of g-C3N4 (33.46 mmol/g·h) and Nb2O5 (41.20 mmol/g·h). This enhanced photocatalytic activity is attributed to a sufficient interfacial interaction thus favouring the fast photogeneration of electron-hole pairs at the Nb2O5/g-C3N4 interface through a direct Z-scheme.


CrystEngComm ◽  
2014 ◽  
Vol 16 (27) ◽  
pp. 6059-6065 ◽  
Author(s):  
Yang Lu ◽  
Yong-Song Luo ◽  
Hong-Mei Xiao ◽  
Shao-Yun Fu

Novel core–shell-structured BiVO4 hollow spheres synthesized via a simple hydrothermal route exhibit an excellent photocatalytic activity.


2017 ◽  
Vol 33 (3) ◽  
pp. 300-304 ◽  
Author(s):  
Tianliang Lu ◽  
Youqiang Wang ◽  
Yingli Wang ◽  
Lipeng Zhou ◽  
Xiaomei Yang ◽  
...  

2008 ◽  
Vol 108 (1-3) ◽  
pp. 340-344 ◽  
Author(s):  
Pavuluri Srinivasu ◽  
Ajayan Vinu ◽  
Shunichi Hishita ◽  
Toshio Sasaki ◽  
Katsuhiko Ariga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document