Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest

2017 ◽  
Vol 55 (9) ◽  
pp. 684-693 ◽  
Author(s):  
Can Du ◽  
Zengchao Geng ◽  
Qiang Wang ◽  
Tongtong Zhang ◽  
Wenxiang He ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Beat Frey ◽  
Lorenz Walthert ◽  
Carla Perez-Mon ◽  
Beat Stierli ◽  
Roger Köchli ◽  
...  

Soil microorganisms such as bacteria and fungi play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of the soil microbiome to a depth of 2 m in Swiss drought-exposed forests of European beech and oaks on calcareous bedrock. We aimed to disentangle the effects of soil depth, tree (beech, oak), and substrate (soil, roots) on microbial abundance, diversity, and community structure. With increasing soil depth, organic carbon, nitrogen, and clay content decreased significantly. Similarly, fine root biomass, microbial biomass (DNA content, fungal abundance), and microbial alpha-diversity decreased and were consequently significantly related to these physicochemical parameters. In contrast, bacterial abundance tended to increase with soil depth, and the bacteria to fungi ratio increased significantly with greater depth. Tree species was only significantly related to the fungal Shannon index but not to the bacterial Shannon index. Microbial community analyses revealed that bacterial and fungal communities varied significantly across the soil layers, more strongly for bacteria than for fungi. Both communities were also significantly affected by tree species and substrate. In deep soil layers, poorly known bacterial taxa from Nitrospirae, Chloroflexi, Rokubacteria, Gemmatimonadetes, Firmicutes and GAL 15 were overrepresented. Furthermore, archaeal phyla such as Thaumarchaeota and Euryarchaeota were more abundant in subsoils than topsoils. Fungal taxa that were predominantly found in deep soil layers belong to the ectomycorrhizal Boletus luridus and Hydnum vesterholtii. Both taxa are reported for the first time in such deep soil layers. Saprotrophic fungal taxa predominantly recorded in deep soil layers were unknown species of Xylaria. Finally, our results show that the microbial community structure found in fine roots was well represented in the bulk soil. Overall, we recorded poorly known bacterial and archaeal phyla, as well as ectomycorrhizal fungi that were not previously known to colonize deep soil layers. Our study contributes to an integrated perspective on the vertical distribution of the soil microbiome at a fine spatial scale in drought-exposed forests.


2016 ◽  
Vol 13 (13) ◽  
pp. 3863-3868 ◽  
Author(s):  
Aidan M. Keith ◽  
Peter A. Henrys ◽  
Rebecca L. Rowe ◽  
Niall P. McNamara

Abstract. Understanding the consequences of different land uses for the soil system is important to make better informed decisions based on sustainability. The ability to assess change in soil properties, throughout the soil profile, is a critical step in this process. We present an approach to examine differences in soil depth profiles between land uses using bootstrapped LOESS regressions (BLRs). This non-parametric approach is data-driven, unconstrained by distributional model parameters and provides the ability to determine significant effects of land use at specific locations down a soil profile. We demonstrate an example of the BLR approach using data from a study examining the impacts of bioenergy land use change on soil organic carbon (SOC). While this straightforward non-parametric approach may be most useful in comparing SOC profiles between land uses, it can be applied to any soil property which has been measured at satisfactory resolution down the soil profile. It is hoped that further studies of land use and land management, based on new or existing data, can make use of this approach to examine differences in soil profiles.


2017 ◽  
Vol 105 (6) ◽  
Author(s):  
P. K. Manigandan ◽  
B. Chandar Shekar

AbstractWe measured the distribution of three naturally occurring radionuclides,


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Pengfa Li ◽  
Weitao Li ◽  
Alex J. Dumbrell ◽  
Ming Liu ◽  
Guilong Li ◽  
...  

ABSTRACT Fungi underpin almost all terrestrial ecosystem functions, yet our understanding of their community ecology lags far behind that of other organisms. Here, red paddy soils in subtropical China were collected across a soil depth profile, comprising 0-to-10-cm- (0-10cm-), 10-20cm-, and 20-40cm-deep layers. Using Illumina MiSeq amplicon sequencing of the internal transcribed spacer (ITS) region, distance-decay relationships (DDRs), and ecological models, fungal assemblages and their spatial patterns were investigated from each soil depth. We observed significant spatial variation in fungal communities and found that environmental heterogeneity decreased with soil depth, while spatial variation in fungal communities showed the opposite trend. DDRs occurred only in 0-10cm- and 10-20cm-deep soil layers, not in the 20-40cm layer. Our analyses revealed that the fungal community assembly in the 0-10cm layer was primarily governed by environmental filtering and a high dispersal rate, while in the deeper layer (20-40cm), it was primarily governed by dispersal limitation with minimal environmental filtering. Both environmental filtering and dispersal limitation controlled fungal community assembly in the 10-20cm layer, with dispersal limitation playing the major role. Results demonstrate the decreasing importance of environmental filtering and an increase in the importance of dispersal limitation in structuring fungal communities from shallower to deeper soils. Effectively, “everything is everywhere, but the environment selects,” although only in shallower soils that are easily accessible to dispersive fungal propagules. This work highlights that perceived drivers of fungal community assembly are dependent on sampling depth, suggesting that caution is required when interpreting diversity patterns from samples that integrate across depths. IMPORTANCE In this work, Illumina MiSeq amplicon sequencing of the ITS region was used to investigate the spatial variation and assembly mechanisms of fungal communities from different soil layers across paddy fields in subtropical China, and the results demonstrate the decreasing importance of environmental filtering and an increase in the importance of dispersal limitation in structuring fungal communities from shallower to deeper soils. Therefore, the results of this study highlight that perceived drivers of fungal community assembly are dependent on sampling depth and suggest that caution is required when interpreting diversity patterns from samples that integrate across depths. This is the first study focusing on assemblages of fungal communities in different soil layers on a relatively large scale, and we thus believe that this study is of great importance to researchers and readers in microbial ecology, especially in microbial biogeography, because the results can provide sampling guidance in future studies of microbial biogeography.


2021 ◽  
Author(s):  
Jianqing Tian ◽  
Hongjun Wang ◽  
Rytas Vilgalys ◽  
Mengchi Ho ◽  
Neal Flanagan ◽  
...  

Abstract Purpose: Wildfire, an increasing disturbance in peatlands, could dramatically change carbon stocks and reshape plant/microbial communities, with long-lasting effects on peatland functions. Soil fungi are important in controlling the belowground carbon and nutrient cycling in peatlands; however, the impact of altered fire regimes on these fungi is still unclear. Methods: Here we assessed fungal abundance, composition, and diversity across four soil depths (0–5 cm, 6–10 cm, 11–15 cm, 16–20 cm) under low-intensity and high-intensity fire in a subtropical peatland in the southeastern USA. Results: Low-intensity fire significantly increased fungal Shannon diversity and the saprotrophic fungal composition in the 0–5 cm soil layer immediately and then retracted within 2 years. Such hump-shaped pattern, however, were not observed in deeper soils. The dominant fungal class Archaeorhizomycetes declined initially and then returned to pre-low-intensity fires levels at 0–5 cm depths. Time since low-intensity fire was a primary driver of fungal composition in the 0–10 cm soil depth, while geographical distance among sites affected the deeper soils (11–20 cm). The fungal Shannon diversity failed to recover to the unburned state even after 30 years after high-intensity fire, especially in 6–20 cm soil depths. Stratification patterns of the fungal community was diminished by high-intensity fire. Soil properties (either phenolics or carbon) were the primary drivers in shaping fungal community reassembly after high-intensity fire across all soil depths. Conclusion: Collectively, the fungal communities seem to be highly resilient to low-intensity fire, but not to high-intensity fire in our shrub bog peatlands.


Sign in / Sign up

Export Citation Format

Share Document