Apparent spot in circular laser hardening: effect of process parameters

2010 ◽  
Vol 3 (S1) ◽  
pp. 1119-1122 ◽  
Author(s):  
L. Giorleo ◽  
A. Liu ◽  
B. Previtali
Author(s):  
Alessandro Fortunato ◽  
Leonardo Orazi ◽  
Giovanni Tani

The bottleneck in laser hardening principally occurs when large surfaces have to be treated because this process situation leads to multi-tracks laser scanning in order to treat all the component surface. Unfortunately, multi-tracks laser trajectories generate an unwanted tempering effect that depends on the overlapping of two close trajectories. To reduce the softening effects, a simulator capable to optimize the process parameters such as laser power and speed, number and types of trajectories, could sensibly increase the applicability of the process. In this paper an original model for the tempering is presented. By introducing a tempering time factor for the martensitic transformation, the hardness reduction can be predicted according to any laser process parameters, material and geometry. Experimental comparisons will be presented to prove the accuracy of the model.


Author(s):  
Santoshkumar V. Wagh ◽  
Dhananjay V. Bhatt ◽  
Jyoti V. Menghani ◽  
Sujit S. Pardeshi ◽  
Bhagyesh B. Deshmukh

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1016
Author(s):  
Nikolaj Mole ◽  
Marko Bojinović ◽  
Pino Koc ◽  
Boris Štok

The response of the hypo-eutectoid steel to laser hardening, which is measured as the depth of the increased hardness, depends not only on the set of the process parameters but also on the prior microstructure of the workpiece. The multiple preliminary stages of the treatment of the workpiece in the industrial conditions are commonly not completely known, resulting in an unclear prior microstructure of the workpiece. To model the response of the hypo-eutectoid steel, a validated numerical model for laser hardening has been used in the computer simulation of the process for four different cases. The numerical model takes into account the 3D geometry of the workpiece, its prior microstructure, and the effect of the heating rate during the laser hardening process on the kinetics of the phase transformation. The four cases were designed to take into account two different sets of process parameters and two different prior microstructures of the workpiece. The output of the computer simulation was verified experimentally.


Author(s):  
Alessandro Fortunato ◽  
Leonardo Orazi ◽  
Giovanni Tani

The bottleneck in laser hardening principally occurs when large surfaces have to be treated because this process situation leads to multitrack laser scanning in order to treat all the component surfaces. Unfortunately, multitrack laser trajectories generate an unwanted tempering effect that depends on the overlapping of two close trajectories. To reduce the softening effects, a simulator capable to optimize the process parameters, such as laser power and speed and number and types of trajectories, could sensibly increase the applicability of the process. In this paper, an original model for the tempering is presented. By introducing a tempering time factor for the martensitic transformation, the hardness reduction can be predicted according to any laser process parameters, material, and geometry. Experimental comparisons will be presented to prove the accuracy of the model.


Author(s):  
K. Wissenbach ◽  
L. Bakowsky ◽  
H.-G. Treusch ◽  
G. Herziger

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 342 ◽  
Author(s):  
Noureddine Barka ◽  
Sasan Sattarpanah Karganroudi ◽  
Rachid Fakir ◽  
Patrick Thibeault ◽  
Vincent Blériot Feujofack Kemda

This study displays the effect of laser surface hardening parameters on the hardness profile (case depth) of a splined shaft made of AISI 4340 steel. The approach is mainly based on experimental tests wherein the hardness profile of laser hardened splines is acquired using micro-hardness measurements. These results are then evaluated with statistical analysis (ANOVA) to determine the principal effect and the contributions of each parameter in the laser hardening process. Using empirical correlations, the case depth of splined shaft at tip and root of spline’s teeth is also estimated and verified with measured data. The obtained results were then used to study the sensitivity of the measured case depths according to the evolution of laser process parameters and geometrical factors. The feasibility and efficiency of the proposed approach lead to a reliable statistical model in which the hardness profile of the spline is estimated with respect to its specific geometry.


Author(s):  
Ilyes Maamri ◽  
Noureddine Barka ◽  
Abderrazak El Ouafi

Maximum hardness and hardened depth are the responses of interest in relation to the laser hardening process. These values define heat treatment quality and have a direct impact on mechanical performance. This paper aims to develop models capable of predicting the shape of the hardness profile depending on laser process parameters for controlling laser hardening quality (LHQ), or rather the response values. An experimental study was conducted to highlight hardened profile sensitivity to process input parameters such as laser power (PL), beam scanning speed (VS) and initial hardness in the core (HC). LHQ modeling was conducted by modeling attributes extracted from the hardness profile curve using two effective techniques based on the punctual and geometrical approaches. The process parameters with the most influence on the responses were laser power, beam velocity and initial hardness in the core. The obtained results demonstrate that the geometrical approach is more accurate and credible than the punctual approach according to performance assessment criteria.


Sign in / Sign up

Export Citation Format

Share Document