Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat (Triticum aestivum L.)

Author(s):  
Wei Jiang ◽  
Rui Pan ◽  
Sebastian Buitrago ◽  
Chu Wu ◽  
Salah Fatouh Abou-Elwafa ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Etika Goyal ◽  
Singh K. Amit ◽  
Ravi S. Singh ◽  
Ajay K. Mahato ◽  
Suresh Chand ◽  
...  

2020 ◽  
Author(s):  
Kristiyana Georgieva ◽  
Denitsa Teofanova ◽  
Lyuben Zagorchev ◽  
Nabil Abumhadi ◽  
Mariela Odjakova

2019 ◽  
Author(s):  
Qian Wan ◽  
Lu Luo ◽  
Xiurong Zhang ◽  
Yuying Lv ◽  
Suqing Zhu ◽  
...  

Abstract Background Nuclear factor Y (NF-Y) gene family consists of NF-YA, NF-YB and NF-YC subfamilies. Many members of NF-Y family have been involved in plant development processes, phytohormone signaling and tolerance to stresses in Arabidopsis and other plant species. However, little attention has been given in peanut. Results A total of 33 AhNF-Y genes (AhNF-Ys) were identified and distributed on 16 chromosomes. A phylogenetic analysis indicated that NF-Y genes prossessed highly conservatism in different plants. Gene duplication analyze indicated that only segmental duplication were detected. The abiotic stress-related regulatory elements analysis showed that AhNF-Ys, except for AhNF-YB6, contained at least one abiotic stress response element. With RNA-seq data, the tissue/organ-specific expression and differential expression profiling under salt stress were analyzed, indicating that six selected AhNF-Y gene may play potential roles in the regulation of salt stress response. qRT-PCR results suggested that these AhNF-Y genes also responded to osmotic, ABA (Abscisic Acid) and SA (Salicylic acid) stresses. Conclusions In this study, thirty three AhNF-Y genes were identified in cultivated peanut and the phylogeny, gene structures, motif composition, chromosomal location, gene duplication, stress-related regulatory elements, and expression patterns were also examined. These results may contribute to functional characterization of AhNF-Y genes in further research.


2020 ◽  
Author(s):  
Peisen Su ◽  
Jun Yan ◽  
Wen Li ◽  
Liang Wang ◽  
Jinxiao Zhao ◽  
...  

Abstract Background: Abiotic stresses including salt stress are environment stresses of limiting the crop growth and yield. It was reported that peroxidases (PRX) were involved in various abiotic stress responses. However, few wheat PRXs were characterized in the mechanism of abiotic stresses. Results: In this study, a novel wheat PRX gene named TaPRX-2A, a member of wheat class III peroxidase gene family, was cloned and characterized in salt stress response. According to the identification of class III PRXs in 12 different plants, we proposed an evolutionary model that this TaPRX-2A may have experienced some exon fusion events during evolution. The results of expression pattern showed that TaPRX-2A exhibited relatively high expression levels in root tissue, but low in stem and leaf tissues by using qRT-PCR. This TaPRX-2A was also induced by some stress and hormone treatments including PEG6000, NaCl, H 2 O 2 , SA, JA, and ABA. The result of overexpressing transgenic wheat showed that this TaPRX-2A enhanced the tolerance of salt comparing the wild-type wheat (WT). We also studied the molecular mechanism of TaPRX-2A mediating the salt stress response. Physiological experiments indicated that TaPRX-2A -overexpressing transgenic wheat possessed a higher survival rate, higher relative water content, and longer shoot length than WT, but remained the same in the root length under salt stress. Further experiments indicated that TaPRX-2A -overexpressing transgenic lines enhanced abiotic tolerance by enhancing oxidative stress tolerance, such as higher antioxidant activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) enzymes, reduction of reactive oxygen species (ROS) accumulation, and lower levels of MDA content. Moreover, the transcript levels of stress-related genes were up-regulated by overexpression of TaPRX-2A. Conclusions: The results showed that TaPRX-2A play a positive factor in response to salt stress by scavenging ROS and regulating stress-related genes.


2021 ◽  
Vol 329 ◽  
pp. 180-191
Author(s):  
Ulkar İbrahimova ◽  
Pragati Kumari ◽  
Saurabh Yadav ◽  
Anshu Rastogi ◽  
Michal Antala ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zebus Sehar ◽  
Noushina Iqbal ◽  
M. Iqbal R. Khan ◽  
Asim Masood ◽  
Md. Tabish Rehman ◽  
...  

AbstractEthylene plays a crucial role throughout the life cycle of plants under optimal and stressful environments. The present study reports the involvement of exogenously sourced ethylene (as ethephon; 2-chloroethyl phosphonic acid) in the protection of the photosynthetic activity from glucose (Glu) sensitivity through its influence on the antioxidant system for adaptation of wheat (Triticum aestivum L.) plants under salt stress. Ten-day-old plants were subjected to control and 100 mM NaCl and treated with 200 µl L−1 ethephon on foliage at 20 days after seed sowing individually or in combination with 6% Glu. Plants receiving ethylene exhibited higher growth and photosynthesis through reduced Glu sensitivity in the presence of salt stress. Moreover, ethylene-induced reduced glutathione (GSH) production resulted in increased psbA and psbB expression to protect PSII activity and photosynthesis under salt stress. The use of buthionine sulfoximine (BSO), GSH biosynthesis inhibitor, substantiated the involvement of ethylene-induced GSH in the reversal of Glu-mediated photosynthetic repression in salt-stressed plants. It was suggested that ethylene increased the utilization of Glu under salt stress through its influence on photosynthetic potential and sink strength and reduced the Glu-mediated repression of photosynthesis.


BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 215 ◽  
Author(s):  
Guido Mastrobuoni ◽  
Susann Irgang ◽  
Matthias Pietzke ◽  
Heike E Aßmus ◽  
Markus Wenzel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document