Petrology and LA-ICP-MS zircon geochronology for Late Cretaceous felsic dikes and intermediate volcanic rocks hosted in Mersin ophiolite, South Turkey and its implications

Author(s):  
Nusret Nurlu
2021 ◽  
pp. 3-12
Author(s):  
N. Y. Nikulova ◽  
◽  
O. V. Udoratina ◽  
I. V. Kozyreva

The lithological and geochemical features of the metasandstones of the Svetlinskaya and Vizingskaya formations of the Middle Late Riphean Chetlas series in the Middle Timan, which are a substrate of rare-metal-rare-earth mineralization in several ore occurrences of the Kosyus ore cluster, have been investigated. The interpretation of the results of traditional weight chemical and mass spectrometric inductively coupled plasma (ICP MS) analyses allowed us to identify differences in the material composition of metapesanics, mainly due to changes in the degree of sedimentation maturity of terrigenous material coming from the demolition areas. The composition of metasandstones in various ratios includes both weakly weathered products of destruction of volcanic rocks of intermediate/basic composition, and altered, including under conditions of the weathering crust, metaterrigenous formations. The accumulation of sediments took place in a shallow coastal-marine environment with changing hydrodynamics, which affected the rate of destruction of rocks in paleo-catchments.


2018 ◽  
Vol 306 ◽  
pp. 189-208 ◽  
Author(s):  
Daianne Francis Höfig ◽  
Juliana Charão Marques ◽  
Miguel Angelo Stipp Basei ◽  
Ronei Osório Giusti ◽  
Cassiano Kohlrausch ◽  
...  

2012 ◽  
pp. 675-705 ◽  
Author(s):  
Alain Cocherie ◽  
Michèle Robert
Keyword(s):  

2018 ◽  
Vol 16 (4) ◽  
pp. 622-634 ◽  
Author(s):  
Kaveh Pazand ◽  
Davoud Khosravi ◽  
Mohammad Reza Ghaderi ◽  
Mohammad Reza Rezvanianzadeh

Abstract Geochemical and hydrogeochemical studies were conducted to assess the origin and geochemical mechanisms driving lead enrichment in groundwaters of semi-arid regions in Central Iran. In this study, 149 water samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of Pb and As in about 68% and 27% of the samples, respectively, exceeded WHO guidelines. Analyzing the results of ICP-MS of parental rocks and aquifer sediments shows that unweathered volcanic rocks were the primary source for lead mobilizing to groundwaters.


2016 ◽  
Vol 53 (1) ◽  
pp. 10-33 ◽  
Author(s):  
Lijuan Liu ◽  
Jeremy P. Richards ◽  
S. Andrew DuFrane ◽  
Mark Rebagliati

Newton is an intermediate-sulfidation epithermal gold deposit related to Late Cretaceous continental-arc magmatism in south-central British Columbia. Disseminated gold mineralization occurs in quartz–sericite-altered Late Cretaceous felsic volcanic rocks, and feldspar–quartz–hornblende porphyry and quartz–feldspar porphyry intrusions. The mineralization can be divided into three stages: (1) disseminated pyrite with microscopic gold inclusions, and sparse quartz–pyrite ± molybdenite veins; (2) disseminated marcasite with microscopic gold inclusions and minor base-metal sulfides; and (3) polymetallic veins of pyrite–chalcopyrite–sphalerite–arsenopyrite. Re–Os dating of molybdenite from a stage 1 vein yielded an age of 72.1 ± 0.3 Ma (published by McClenaghan in 2013). The age of the host rocks has been constrained by U–Pb dating of zircon: Late Cretaceous felsic volcanic rocks, 72.1 ± 0.6 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013); feldspar–quartz–hornblende porphyry, 72.1 ± 0.5 Ma; quartz–feldspar porphyry, 70.9 ± 0.5 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013). The mineralized rocks are intruded by a barren diorite, with an age of 69.3 ± 0.4 Ma. Fluid inclusions in quartz–pyrite ± molybdenite ± gold veins yielded an average homogenization temperature of 313 ± 51 °C (number of samples, n = 82) and salinity of 4.8 ± 0.9 wt.% NaCl equiv. (n = 46), suggesting that a relatively hot and saline fluid likely of magmatic origin was responsible for the first stage of mineralization. Some evidence for boiling was also observed in the veins. However, the bulk of the gold mineralization occurs as disseminations in the wall rocks, suggesting that wall-rock reactions were the main control on ore deposition.


Sign in / Sign up

Export Citation Format

Share Document