Hepatoprotective effects of soy protein isolate against dimethylnitrosamine-induced acute liver injury in Sprague Dawley rat

2012 ◽  
Vol 6 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Mohammad Hassan Eftekhari ◽  
Maryam Ershad ◽  
Ahmad Oryan
2009 ◽  
Vol 202 (1) ◽  
pp. 141-152 ◽  
Author(s):  
Rohit Singhal ◽  
Kartik Shankar ◽  
Thomas M Badger ◽  
Martin J Ronis

Although soy foods have been recognized as an excellent source of protein, there have been recent concerns regarding potential adverse effects of isoflavone phytochemicals found in soy products, which are known to bind and activate estrogen receptors. Here, we used global hepatic gene expression profiles in ovariectomized female Sprague–Dawley rats treated with 17β-estradiol (E2) or fed with soy protein isolate (SPI) as a means of estimating potential estrogenicity of SPI. Female Sprague–Dawley rats were fed AIN-93G diets containing casein (CAS) or SPI starting at postnatal day (PND) 30. Rats were ovariectomized on PND 50 and infused with E2 or vehicle in osmotic pumps for 14 d. Microarray analysis was performed on liver using Affymetrix GeneChip Rat 230 2.0. Serum E2 levels were within normal ranges for the rat and SPI feeding did not increase uterine wet weight in the absence or presence of E2. SPI feeding altered (P<0.05, ≥±1.5-fold) the expression of 82 genes, while E2 treatment altered 892 genes. Moreover, only 4% of E2-affected genes were also modulated by SPI, including some whose expression was reversed by SPI feeding. The interaction between E2 and SPI uniquely modulated the expression profile of 225 genes including the reduction of those involved in fatty acid biosynthesis or glucocorticoid signaling and an induction of those involved in cholesterol metabolism. The different hepatic gene signatures produced by SPI feeding compared with E2 and the lack of increase in uterine wet weight in rats fed with SPI suggest that SPI is not estrogenic in these tissues.


2013 ◽  
Vol 45 (22) ◽  
pp. 1072-1083 ◽  
Author(s):  
Isabelle R. Miousse ◽  
Neha Sharma ◽  
Michael Blackburn ◽  
Jamie Vantrease ◽  
Horacio Gomez-Acevedo ◽  
...  

Isoflavones are phytochemical components of soy diets that bind weakly to estrogen receptors (ERs). To study potential estrogen-like actions of soy in the mammary gland during early development, we fed weanling male and female Sprague-Dawley rats a semipurified diet with casein as the sole protein source from postnatal day 21 to 33, the same diet substituting soy protein isolate (SPI) for casein, or the casein diet supplemented with estradiol (E2) at 10 μg/kg/day. In contrast to E2, the SPI diet induced no significant change in mammary morphology. In males, there were 34 genes for which expression was changed ≥2-fold in the SPI group vs. 509 changed significantly by E2, and 8 vs. 174 genes in females. Nearly half of SPI-responsive genes in males were also E2 responsive, including adipogenic genes. Serum insulin was found to be decreased by the SPI diet in males. SPI and E2 both downregulated the expression of ERα ( Esr1) in males and females, and ERβ ( Esr2) only in males. Chromatin immunoprecipitation revealed an increased binding of ERα to the promoter of the progesterone receptor ( Pgr) and Esr1 in both SPI- and E2-treated males compared with the casein group but differential recruitment of ERβ. ER promoter binding did not correlate with differences in Pgr mRNA expression. This suggests that SPI fails to recruit appropriate co-activators at E2-inducible genes. Our results indicate that SPI behaves like a selective estrogen receptor modulator rather than a weak estrogen in the developing mammary gland.


Author(s):  
Haixia Yun ◽  
Xinyu Wu ◽  
Yiwei Ding ◽  
Wendou Xiong ◽  
Xianglan Duan ◽  
...  

Background and Objective : A Tibetan traditional herb named Swertia mussotii Franch., also called “Zangyinchen” by the local people of Qinghai-Tibet area, has been used to protect the liver from injury for many years. However, the curative effect and molecular mechanism of the herb have not been demonstrated clearly. Materials and Methods: In our study, serum alanine aminotransferase, aspartate aminotransferase, total bilirubin levels were examined after S. mussotii Franch. treatment in the acute liver injury of the carbon tetrachloride-induced rat model. Then, Proteome Analysis was applied to explore the potential mechanism of SMT for hepatoprotective effects after iTRAQLC-MS/MS analysis (isobaric tag for relative and absolute quantification-liquid chromatograph-mass spectrometer with tandem mass spectrometry). Results: Serum results showed, alanine aminotransferase, aspartate aminotransferase, total bilirubin levels of rats with acute liver injury were all improved with SMT treatment. Moreover, Proteome Analysis suggested that, with S. Mussotii Franch. treatment, the levels of lipid catabolic process and lipid homeostasis were all enhanced. And the results of protein-protein interaction (PPI) analysis illustrated that these proteins assembled in PPI networks were found almost significantly enriched in response to lipid, negative regulation of lipase activity, response to lipopolysaccharide etc. Furthermore, the downregulated MRP14 and MRP8 proteins were found involved in the lipid metabolism, which may indicate the mechanism of SMT protection liver from ALI induced by carbon tetrachloride. Conclusion: SMT herb could play a role in hepatoprotection and alleviate the effect of acute liver injury by impacting the lipid metabolism associated biological process.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


Sign in / Sign up

Export Citation Format

Share Document