Microbial Inactivation by Non-equilibrium Short-Pulsed Atmospheric Pressure Dielectric Barrier Discharge (Cold Plasma): Numerical and Experimental Studies

Author(s):  
Ender H. Arserim ◽  
Deepti Salvi ◽  
Gregory Fridman ◽  
Donald W. Schaffner ◽  
Mukund V. Karwe
2020 ◽  
Vol 10 (18) ◽  
pp. 6301 ◽  
Author(s):  
Eun Song Lee ◽  
Chan-Ick Cheigh ◽  
Joo Hyun Kang ◽  
Seung Young Lee ◽  
Sea C. Min

This article evaluates the effects of in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment on microbial inactivation, nitrate and nitrite contents, oral toxicity, and storage quality of protein-coated boiled chicken breast cubes (CBCs). ADCP treatment at 24 kV for 3 min inactivated natural mesophilic aerobic bacteria, Salmonella, and Tulane virus in CBCs by 0.7 ± 0.2, 1.4 ± 0.1 log CFU/cube, and 1.1 ± 0.2 log PFU/cube, respectively. ADCP treatment did not affect the nitrite content of CBCs (p > 0.05). Furthermore, the hematological and blood biochemical parameters from toxicity tests indicated the toxicological safety of ADCP-treated CBCs. Microbial counts of natural bacteria and Salmonella in ADCP-treated CBCs were lower than the ADCP-untreated CBCs by 0.7–0.9 and 1.4–1.7 log CFU/cube, respectively, throughout post-treatment storage at 4 °C for 21 d. ADCP treatment did not alter the pH, color, total volatile basic nitrogen, lipid oxidation, and tenderness of CBCs during storage at 4 and 24 °C, and did not change the sensory properties of CBCs following a 3 d storage period at 4 °C (p > 0.05). Thus, ADCP treatment has the potential to be applied as a method to increase the microbiological safety of packaged ready-to-eat chicken products, leading to overall toxicological safety.


2020 ◽  
Vol 38 (4) ◽  
pp. 229-238
Author(s):  
G. Divya Deepak ◽  
N. K. Joshi ◽  
Ram Prakash

AbstractIn this study, an atmospheric pressure dielectric barrier discharge-based argon plasma jet has been modeled using COMSOL Multiphysics, which is based on the finite element method. The fluid dynamics and plasma modules of COMSOL Multiphysics code have been used for the modeling of the plasma jet. The plasma parameters, such as electron density, electron temperature, and electrical potential, have been examined by varying the electrical parameters, that is, supply voltage and supply frequency for both cases of static and with the flow of argon gas. The argon gas flow rate was fixed at 1 l/min. Ring electrode arrangement is subjected to a range of supply frequencies (10–25 kHz) and supply voltages (3.5–6 kV). The experimental results of the ring electrode configuration have been compared with the simulation analysis results. These results help in establishing an optimized operating range of the dielectric barrier discharge-based cold plasma jet in the glow discharge regime without arcing phenomenon. For the applied voltage and supply frequency parameters examined in this work, the discharge was found to be consistently homogeneous and displayed the characteristics of atmospheric pressure glow discharge.


2016 ◽  
Vol 34 (4) ◽  
pp. 615-620 ◽  
Author(s):  
G. Divya Deepak ◽  
N.K. Joshi ◽  
U. Pal ◽  
R. Prakash

AbstractIn this study, an atmospheric pressure cold plasma jet has been generated based on dielectric barrier discharge plasma. The double ring electrode configuration is used and analysis has been performed subjected to wide range of supply frequencies up to 25 kHz and supply voltage up to 6 kV. The electrical characterization of the plasma jet has been carried out using a high voltage probe. The V-I characteristics of the developed cold plasma jet have been studied and the consumption of the power has been analyzed at various input combinations of supply frequency and applied voltage. Consequently, the supply voltage and supply frequency are optimized with respect to the discharge current and jet length for optimum power consumption. The peak power consumed for glow discharge operation has been found to be 1.27 W in the optimized configuration.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1214
Author(s):  
Eun Song Lee ◽  
Ye Jeong Jeon ◽  
Sea C. Min

Microbiological safety of ready-to-eat foods is paramount for consumer acceptability. The effects of in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment on the microbiological safety and quality of model chicken salad (CS) were investigated in this study. CS, packaged in a commercial polyethylene terephthalate container, was treated with ADCP at 24 kV for 2 min. The inactivation of indigenous mesophilic bacteria, Salmonella, and Tulane virus in CS; growth of indigenous mesophilic bacteria and Salmonella in CS; and quality of CS during storage at 4 °C were then investigated. ADCP inactivated indigenous mesophilic bacteria, Salmonella, and Tulane virus by 1.2 ± 0.3 log CFU/g, 1.0–1.5 ± 0.2 log CFU/g, and 1.0 ± 0.1 log PFU/g, respectively. Furthermore, it effectively retarded the growth of the microorganisms, while not significantly affecting the color of chicken, romaine lettuce, and carrot, and the antioxidant capacity of all vegetables throughout storage at the tested temperatures (p > 0.05). The color, smell, and appearance of all vegetables evaluated on day 0 were not significantly different in the sensory test, regardless of the treatment (p > 0.05). Collectively, ADCP treatment effectively decontaminates packaged CS without altering its quality-related properties.


Sign in / Sign up

Export Citation Format

Share Document