The role of the Najd Fault System in the tectonic evolution of the Hammamat molasse sediments, Eastern Desert, Egypt

2009 ◽  
Vol 3 (1) ◽  
pp. 1-26 ◽  
Author(s):  
Mohamed A. Abd El-Wahed
2017 ◽  
Vol 106 (8) ◽  
pp. 2817-2836 ◽  
Author(s):  
Yasser M. Sultan ◽  
Mohamed K. El-Shafei ◽  
Mohamed O. Arnous

2002 ◽  
Vol 139 (1) ◽  
pp. 15-26 ◽  
Author(s):  
GÜROL SEYİTOĞLU ◽  
OKAN TEKELİ ◽  
İBRAHİM ÇEMEN ◽  
ŞEVKET ŞEN ◽  
VEYSEL IŞIK

The Alaşehir graben is a well-defined prominent extensional structure in western Turkey, generally trending E–W and containing four sedimentary units. At the beginning of graben formation during Early–Middle Miocene times, the first fault system was active and responsible for the accumulation of the first and second sedimentary units. In Pliocene times, a second fault system developed in the hanging wall of the first system and a third sedimentary unit was deposited. The recently active third fault system separates older graben fill and a fourth sedimentary unit. Activity on each fault system caused the rotation and uplift of previous systems, similar to the ‘flexural rotation/rolling hinge’ model, but our field observations indicate that the rotated first fault system is also active, allowing exhumation of larger amounts of rock units. This paper documents that graben formation in western Turkey is a sequential process. Its different periods are represented by three fault systems and associated sedimentation. Consequently, recent claims using age data from only the second and/or third sedimentary units to determine the timing of graben formation are misleading.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1499
Author(s):  
Davide Fronzi ◽  
Francesco Mirabella ◽  
Carlo Cardellini ◽  
Stefano Caliro ◽  
Stefano Palpacelli ◽  
...  

The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses.


2021 ◽  
Vol 80 (11) ◽  
Author(s):  
M. Wannous ◽  
C. Jahnke ◽  
U. Troeger ◽  
M. Falk ◽  
F. Bauer

AbstractPorous and fractured aquifers exist in the area of Hurghada, Eastern Desert of Egypt, whose recharge processes through the common flash floods are not identified. Hydrochemical parameters, stable isotopes 18O, 2H and tritium in floodwater and groundwater were applied in the area subject to study. Additionally, He isotopes were investigated in the deep wells in the faulted zone at the Abu Shaar Plateau. 3H activity in all sampled points lies below the detection limit excluding a recent recharge component in groundwater. However, the hydrochemical ratios and the stable isotope signature confirm that the shallow wells and springs (Red Sea Hills group) are being recharged from modern precipitation. The hydrochemical parameters of the deep wells at the Abu Shaar Plateau (coastal plain group) confirm another origin for the ions rather than the modern precipitation. Together with the 18O and 2H values, the Br/Cl ratio of this group confirms the absence of seawater intrusion component and the role of the fault as a hydraulic barrier. These 18O and 2H values deviate from the GMWL confirming an evaporation effect and colder infiltration conditions and reveal strongly a possible mixing with the Nubian Sandstone in the region. The 3He/4He ratio confirms a mantle contribution of 2% from the total He components.


2021 ◽  
pp. 1-18
Author(s):  
Shehata Ali ◽  
Abdullah S. Alshammari

Abstract The Arabian Shield of Saudi Arabia represents part of the Arabian–Nubian Shield and forms an exposure of juvenile continental crust on the eastern side of the Red Sea rift. Gabbroic intrusions in Saudi Arabia constitute a significant part of the mafic magmatism in the Neoproterozoic Arabian Shield. This study records the first detailed geological, mineralogical and geochemical data for gabbroic intrusions located in the Gabal Samra and Gabal Abd areas of the Hail region in the Arabian Shield of Saudi Arabia. Geological field relations and investigations, supported by mineralogical and geochemical data, indicate that the gabbroic intrusions are generally unmetamorphosed and undeformed, and argue for their post-collisional emplacement. Their mineralogical and geochemical features reveal crystallization from hydrous, mainly tholeiitic, mafic magmas with arc-like signatures, which were probably inherited from the previous subduction event in the Arabian–Nubian Shield. The gabbroic rocks exhibit sub-chondritic Nb/U, Nb/Ta and Zr/Hf ratios, revealing depletion of their mantle source. Moreover, the high ratios of (Gd/Yb)N and (Dy/Yb)N indicate that their parental mafic melts were derived from a garnet-peridotite source with a garnet signature in the mantle residue. This implication suggests that the melting region was at a depth exceeding ∼70–80 km at the garnet stability field. They have geochemical characteristics similar to other post-collisional gabbros of the Arabian–Nubian Shield. Their origin could be explained by adiabatic decompression melting of depleted asthenosphere that interacted during ascent with metasomatized lithospheric mantle in an extensional regime, likely related to the activity of the Najd Fault System, at the end of the Pan-African Orogeny.


Tectonics ◽  
2011 ◽  
Vol 30 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
F. Mirabella ◽  
F. Brozzetti ◽  
A. Lupattelli ◽  
M. R. Barchi

1988 ◽  
Vol 1 (4) ◽  
pp. 363-372 ◽  
Author(s):  
M.A. Dardenne ◽  
C.F. Ferreira Filho ◽  
M.R. Meirelles

2021 ◽  
Author(s):  
Matthieu Ribot ◽  
Yann Klinger ◽  
Edwige Pons-Branchu ◽  
Marthe Lefevre ◽  
Sigurjón Jónsson

<p>Initially described in the late 50’s, the Dead Sea Fault system connects at its southern end to the Red Sea extensive system, through a succession of left-stepping faults. In this region, the left-lateral differential displacement of the Arabian plate with respect to the Sinai micro-plate along the Dead Sea fault results in the formation of a depression corresponding to the Gulf Aqaba. We acquired new bathymetric data in the areas of the Gulf of Aqaba and Strait of Tiran during two marine campaigns (June 2018, September 2019) in order to investigate the location of the active faults, which structure and control the morphology of the area. The high-resolution datasets (10-m posting) allow us to present a new fault map of the gulf and to discuss the seismic potential of the main active faults.</p><p>We also investigated the eastern margin of the Gulf of Aqaba and Tiran island to assess the vertical uplift rate. To do so, we computed high-resolution topographic data and we processed new series of U-Th analyses on corals from the uplifted marine terraces.</p><p>Combining our results with previous studies, we determined the local and the regional uplift in the area of the Gulf of Aqaba and Strait of Tiran.</p><p>Eventually, we discussed the tectonic evolution of the gulf since the last major change of the tectonic regime and we propose a revised tectonic evolution model of the area.</p><p> </p>


Terra Nova ◽  
2014 ◽  
Vol 26 (5) ◽  
pp. 387-394 ◽  
Author(s):  
Sven Erik Meyer ◽  
Cees Passchier ◽  
Tamer Abu-Alam ◽  
Kurt Stüwe

Sign in / Sign up

Export Citation Format

Share Document