Identification of critical soil erosion prone areas and annual average soil loss in an upland agricultural watershed of Western Ghats, using analytical hierarchy process (AHP) and RUSLE techniques

2014 ◽  
Vol 8 (6) ◽  
pp. 3697-3711 ◽  
Author(s):  
G. S. Pradeep ◽  
M. V. Ninu Krishnan ◽  
H. Vijith
2019 ◽  
Vol 11 (2) ◽  
pp. 529-539 ◽  
Author(s):  
Mahmud Mustefa ◽  
Fekadu Fufa ◽  
Wakjira Takala

Abstract Currently, soil erosion is the major environmental problem in the Blue Nile, Hangar watershed in particular. This study aimed to estimate the spatially distributed mean annual soil erosion and map the most vulnerable areas in Hangar watershed using the revised universal soil loss equation. In this model, rainfall erosivity (R-factor), soil erodibility (K-factor), slope steepness and slope length (LS-factor), vegetative cover (C-factor), and conservation practice (P-factor) were considered as the influencing factors. Maps of these factors were generated and integrated in ArcGIS and then the annual average soil erosion rate was determined. The result of the analysis showed that the amount of soil loss from the study area ranges from 1 to 500 tha−1 yr−1 with an average annual soil loss rate of 32 tha−1 yr−1. Considering contour ploughing with terracing as a fully developed watershed management, the resulting soil loss rate was reduced from 32 to 19.2 tha−1 yr−1. Hence, applying contour ploughing with terracing effectively reduces the vulnerability of the watershed by 40%. Based on the spatial vulnerability of the watershed, most critical soil erosion areas were situated in the steepest part of the watershed. The result of the study finding is helpful for stakeholders to take appropriate mitigation measures.


2013 ◽  
Vol 71 (1) ◽  
pp. 287-292 ◽  
Author(s):  
Qiyong Yang ◽  
Yunqiu Xie ◽  
Wenjun Li ◽  
Zhongcheng Jiang ◽  
Hui Li ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 529 ◽  
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Xiayu Cao ◽  
Yuru Li

Soil erosion is a serious environmental problem in the Loess Plateau, China. Therefore, it is important to understand and evaluate soil erosion process in a watershed. In this study, the Chinese Soil Loss Equation (CSLE) is developed to evaluate the soil loss and analyze the impact of land use and slope on soil erosion in Jiuyuangou (JYG) watershed located in the hilly-gullied loess region of China 1970–2015. The results show that the quantities of soil erosion decreased clearly from 1977 to 2015 in the study area, which from 2011 (t/km²·a) in 1977 to 164 (t/km²·a) in 2004 and increased slowly to 320 (t/km²·a) in 2015. No significant soil erosion (<300 t/km²·a) changed in JYG watershed, which increased dramatically from 8.93% to 69.34% during 1977–2015. The area of farmland in this study area has been reduced drastically. Noting that the annual average soil erosion modulus of grassland was also showing a dropped trend from 1977 to 2015. In addition, the study shows that the annual average soil erosion modulus varied with slope gradient and the severe soil erosion often existed in the slope zone above 25°, which accounted for 4657 (t/km²·a) in 1977 and 382.27 (t/km²·a) in 2015. Meanwhile, soil erosion of different land-use types presented the similar changing trend (declined noticeably and then increased slowly) with the change of slope gradient from 1977 to 2015. Combined the investigations of extreme rainfall on 26 July 2015 for JYG watershed, the study provides the scientific support for the implementation of soil and water conservation measures to reduce the soil erosion and simplify Yellow River management procedures.


2021 ◽  
Vol 4 ◽  
pp. 10-24
Author(s):  
Berhanu G. Sinshaw ◽  
Abreham M. Belete ◽  
Agumase K. Tefera ◽  
Abebe Birara Dessie ◽  
Belay B. Bizuneh ◽  
...  

Author(s):  
Sangeetha Ramakrishnan ◽  
Ambujam Neelakanda Pillai Kanniperumal

The Nilgiri Biosphere, being one of the critical catchments, a small agricultural watershed of Udhagamandalam has been analysed to show the need to improve the agriculture by reducing the soil erosion. For this study, the land use and land cover classification was undertaken using Landsat images to highlight the changes that have occurred between 1981 and 2019. The Revised Universal Soil Loss Equation (RUSLE) method and the Geographic Information System (GIS) was used in this study to determine the soil erosion vulnerability of Sillahalla watershed in the Nilgiri Hills in Tamilnadu. This study will help to promote the economic development of the watershed with proper agricultural planning and erosion management. This study focuses on the estimation of the average annual soil loss and to classify the spatial distribution of the soil loss as a map with the RUSLE method and GIS. To estimate the average annual soil loss of the study area, GIS layers of the RUSLE factors like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C) and conservation practice (P) were computed in a raster data format. The total soil loss and average annual soil loss of the study area for 1981–1990,1991–2000, 2001–2010, 2011–2019 were found to be 0.2, 0.254, 0.3, 0.35 million t/year and 31.33, 37.78, 46.7, 51.89 t/ha/year, respectively. The soil erosion rate is classified into different classes as per the FAO guidelines and this severity classification map was prepared to identify the vulnerable areas.


2019 ◽  
Vol 8 (1) ◽  
pp. 120-129
Author(s):  
Kidist Tsegaye ◽  
Hailu Kendie Addis ◽  
Ebrahim Esa Hassen

Erosion map of a watershed offers a wealth of knowledge and can be crucial for implementing site-specific management interventions. Thus, watershed-based soil erosion assessment was conducted to recognize erosion hotspot areas, while aiming to roughly calculate the average annual soil loss in Genda-wuha watershed, with a total area of 154,548.5 ha located in the northwest lowland of Blue Nile basin Ethiopia using USLE/GIS approach. Sixteen years of rainfall data, 53 soil sample data, a 30m by 30m digital elevation model (DEM), a land-use/land-cover map, and support practice factor were used to determine high erosion risk areas. The USLE parameters were integrated and analyzed using a raster calculator in the ArcGIS platform to predict and map the mean annual soil loss of Genda-wuha watershed. The result showed that the annual soil loss of the watershed extends from none in the lower and middle part of the watershed to 75.36 Megagram (Mg) ha-1yr-1 in the steeper parts of the watershed with a mean annual soil loss of 7.9 Mg ha-1yr-1. Most of the soil erosion affected areas are spatially situated in the upper steep slope parts of Genda-wuha watershed, which could be as a result of an increased slope gradient and length in the specified location. However, the majority of the watershed (82.62%) was estimated to be low erosion rates varying from 0 to 5 Mg ha–1 yr–1 and these areas correspond primarily to nearly flat landscapes of the watershed.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1817 ◽  
Author(s):  
Jinping Xue ◽  
Dongwei Lyu ◽  
Dingyong Wang ◽  
Yongmin Wang ◽  
Deliang Yin ◽  
...  

The adjacent agricultural watershed is a vital component of the Three Gorges Reservoir Region (TGRR); however, it is affected by serious soil erosion. Assessing soil erosion dynamics in such watersheds is useful for identifying its causes and tendencies to develop, in turn providing scientific information for soil and water conservation at the regional scale. In the present study, the spatial and temporal patterns of soil erosion of a small agricultural watershed in central TGRR were investigated from 2002 to 2014 using the Revised Universal Soil Loss Equation (RUSLE) model, combined with Geographic Information Systems (GIS). The trends and processes of the overall soil erosion intensity were analyzed using spatial overlay analysis and the Markov transition matrix model, respectively. The spatial distribution of soil erosion rates within this watershed was relatively consistent during the study period. Erosion intensity was moderate, with a mean soil loss of 35.1 t·ha−1·year−1. Precipitation was a dominant factor influencing the intensity of soil erosion. Moreover, most erosion intensities shifted closely to middle grades from 2002 to 2008, and declined from 2008 to 2014, indicating that soil erosion in the Wangjiagou watershed has recently decreased. These results suggest that recently implemented integrated soil management practices were responsible for the recently observed erosion patterns.


Sign in / Sign up

Export Citation Format

Share Document