Individual and combined application of powder and soluble nanoclay and biochar on hydrological responses and soil loss at plot scale

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Leila Gholami ◽  
Negar Hasanzadeh ◽  
Abdulvahed Khaledi Darvishan ◽  
Habibollah Younesi
2020 ◽  
Vol 12 (4) ◽  
pp. 1597 ◽  
Author(s):  
Birhanu Kebede ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Amrakh I. Mamedov ◽  
Mitsuru Tsubo ◽  
...  

The use of anionic polyacrylamide (PAM) as a soil conditioner could help prevent soil loss by water. In this study, we determined the effective granular PAM rate that best reduces runoff and soil loss from Oxisols. Furthermore, the effectiveness of the selected PAM rate was tested by applying it in a mixture with gypsum (G) or lime (L). The study was conducted in two phases: (i) Dry PAM rates of 0 (C), 20 kg ha−1 (P20), 40 kg ha−1 (P40), and 60 kg ha−1 (P60) were applied onto soil surface and run for six consecutive rainfall storms of 70 mm h−1 intensity for 1 h duration, and the effective PAM rate was selected; and (ii) G (4 t ha−1) or L (2 t ha−1) were applied alone or mixed with the selected PAM rate. The P20 was found to be effective in reducing runoff in the beginning while P40 and P60 were more effective starting from the third storm through the end of the consecutive storms, but with no statistically significant difference between P40 and P60. Hence, P40 was selected as the most suitable rate for the given test soil and rainfall pattern. On the other hand, the mixed application of P40 with G or L increased infiltration rate (IR) in the first two storms through improving soil solution viscosity. However, effectiveness of the mixtures had diminished by various degrees as rain progressed, as compared to P40 alone, which could be attributed to the rate and properties of G and L. In conclusion, the variation in effectiveness of PAM rates in reducing runoff with storm duration could indicate that the effective rates shall be selected based on the climatic region in that lower rates for the short rains or higher rates for elongated rains. Moreover, combined application of PAM with L could offer a good option to both fairly reduce soil erosion and improve land productivity especially in acidic soils like Oxisols, which requires further field verification.


2020 ◽  
Vol 9 (11) ◽  
pp. 667
Author(s):  
István Waltner ◽  
Sahar Saeidi ◽  
János Grósz ◽  
Csaba Centeri ◽  
Annamária Laborczi ◽  
...  

As soil erosion is still a global threat to soil resources, the estimation of soil loss, particularly at a spatiotemporal setting, is still an existing challenge. The primary aim of our study is the assessment of changes in soil erosion potential in Hungary from 1990 to 2018, induced by the changes in land use and land cover based on CORINE Land Cover data. The modeling scheme included the application and cross-valuation of two internationally applied methods, the Universal Soil Loss Equation (USLE) and the Pan-European Soil Erosion Risk Assessment (PESERA) models. Results indicate that the changes in land cover resulted in a general reduction in predicted erosion rates, by up to 0.28 t/ha/year on average. Analysis has also revealed that the combined application of the two models has reduced the occurrence of extreme predictions, thus, increasing the robustness of the method. Random Forest regression analysis has revealed that the differences between the two models are mainly driven by their sensitivity to slope and land cover, followed by soil parameters. The resulting spatial predictions can be readily applied for qualitative spatial analysis. However, the question of extreme predictions still indicates that quantitative use of the output results should only be carried out with sufficient care.


2019 ◽  
Vol 7 (2) ◽  
pp. 100-111
Author(s):  
Miskar Maini ◽  
Junita Eka Susanti

Standar permintaan engineering pesawat agar desain bangunan infrastruktur di area Air Strip Runway 2600 yang ada dapat mempunyai fungsi lain. Sedangkan kondisi lain sangat menentukan keselamatan karena lahan di sekitar Air Strip Runway 2600 Bandara Depati Amir (PGK) jika tidak ditutupi vegetasi seperti rumput, kondisi lain lahan yang belum ditutupi vegetasi di sekitar Air Strip Runway 2600 berpotensi akan mengalami erosi lahan, kemudian hasil erosi lahan ini akan terbawa oleh aliran air sehingga akan masuk ke saluran drainase yang akan menyebabkan sedimentasi pada saluran drainase tersebut, akhirnya akan berkurang efektifitas kinerja saluran drainase tersebut. Metode yang digunakan untuk memprediksi laju rata-rata erosi di area Air Strip Runway 2600 dengan memperhitungkan faktor erosivitas hujan, erodibilitas tanah, kemiringan lereng atau panjang lereng, pengelolaan tanaman dan konservasi tanah, yang masing masing tata guna lahan tersebut mengacu pada Masterplan Ultimate Bandara Depati Amir (PGK). Perhitungan dilakukan menggunakan persamaan USLE (Universal Soil Loss Equation) yang dikembangkan oleh Wischmeier dan Smith (1965, 1978), kemudian Sediment Delivery Ratio (SDR) dan Sediment Yield.Hasil penelitian ini, prediksi laju erosi permukaan pada area Air Strip Runway 2600 Bandara Depati Amir (PGK) tahun pertama yang mencapai 5,60 mm/tahun atau 100,76 Ton/Ha/tahun, laju erosi tahun kedua mencapai 3,38 mm/tahun atau 60,84 Ton/Ha/tahun dapat diklasifikasikan ke dalam kelas bahaya erosi sedang (kelas III) dan nilai SDR adalah sebesar 56,3%, nilai sediment yield (SR) pada tahun pertama sebesar 5.887,59 Ton/Tahun, pada tahun kedua ketika rumput pada area Air Strip telah tumbuh dengan sempurna terjadi penurunan hasil sediment yield yaitu nilai SR sebesar 3.554,85 Ton/Tahun.


Author(s):  
Nguyễn Quang Việt ◽  
Trương Đình Trọng ◽  
Hồ Thị Nga

Vinh Linh, the northern district of Quang Tri province is characterized by a diversified topography with a large variety of elevations, high rainfall, and decreasing land cover due to forest exploiting for cultivation land. Thus, there is a high risk of erosion, soil fertility washout. With the support of GIS technology, the authors used the rMMF model to measure soil erosion. The input data of model including 15 coefficients related to topography, soil properties, climate and land cover. The simulations of rMMF include estimates of rainfall energy, runoff, soil particle detachment by raindrop, soil particle detachment by runoff, sediment transport capacity of runoff and soil loss. The result showed that amount of soil loss in year is estimated to vary between 0 kg/m2 minimum and 149 kg/m2 maximum and is divided into 4-classes of erosion. Light class almost covers the region researched (75.9% of total area), while moderate class occupies 8.1% of total area, strong classes only hold small area (16% of total area). Therefore, protection of the forest floor in sloping areas is one of the most effective methods to reduce soil erosion.


2019 ◽  
Vol 2 (1) ◽  
pp. 071-084
Author(s):  
Silwanus M. Talakua ◽  
Rafael M. Osok

The study was conducted in Wai Sari sub-watershed, Western Seram Regency Maluku to develop an accurate land degradation assessment model for tropical small islands. The Stocking’s field land degradation measurement and RUSLE methods were applied to estimate soil loss by erosion and the results of both methods were statistically tested in order to obtain a correction factor. Field indicators and prediction data were measured on 95 slope units derived from the topographic map. The rates of soil loss were calculated according to both methods, and the results were used to classify the degree of land degradation. The results show that the degree of land degradation based on the field assessment ranges from none-slight (4.04 - 17.565 t/ha/yr) to very high (235.44 - 404.00 t/ha/yr), while the RUSLE method ranges from none-slight (0.04-4.59 t/ha/yr) to very high 203.90 - 518.13 t/ha/yr.  However, the RUSLE method shows much higher in average soil loss (133.4 t/ha/yr) than the field assessment (33.9 t/ha/yr). The best regression equation of  logD/RP = - 0.594 + 1.0 logK + 1.0 logLS + 1.0 logC or D = 0.2547xRxKxLSx CxP was found to be a more suitable land degradation assessment  model for a small-scale catchment area in the tropical small islands.


Sign in / Sign up

Export Citation Format

Share Document