Spatiotemporal changes of climatic parameters extreme quantiles and their role on evaporation in N. Iran (Golestan province)

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Karim Solaimani ◽  
Sedigheh Bararkhanpour
2020 ◽  
Vol 64 (4) ◽  
pp. 40407-1-40407-13 ◽  
Author(s):  
Ran Pang ◽  
He Huang ◽  
Tri Dev Acharya

Abstract Yongding River is one of the five major river systems in Beijing. It is located to the west of Beijing. It has influenced culture along its basin. The river supports both rural and urban areas. Furthermore, it influences economic development, water conservation, and the natural environment. However, during the past few decades, due to the combined effect of increasing population and economic activities, a series of changes have led to problems such as the reduction in water volume and the exposure of the riverbed. In this study, remote sensing images were used to derive land cover maps and compare spatiotemporal changes during the past 40 years. As a result, the following data were found: forest changed least; cropland area increased to a large extent; bareland area was reduced by a maximum of 63%; surface water area in the study area was lower from 1989 to 1999 because of the excessive use of water in human activities, but it increased by 92% from 2010 to 2018 as awareness about protecting the environment arose; there was a small increase in the built-up area, but this was more planned. These results reveal that water conservancy construction, agroforestry activities, and increasing urbanization have a great impact on the surrounding environment of the Yongding River (Beijing section). This study discusses in detail how the current situation can be attributed to of human activities, policies, economic development, and ecological conservation Furthermore, it suggests improvement by strengthening the governance of the riverbed and the riverside. These results and discussion can be a reference and provide decision support for the management of southwest Beijing or similar river basins in peri-urban areas.


2018 ◽  
Vol 69 (10) ◽  
pp. 2826-2832
Author(s):  
Ioan Gabriel Sandu ◽  
Viorica Vasilache ◽  
Andrei Victor Sandu ◽  
Marin Chirazi ◽  
Cezar Honceriu ◽  
...  

The saline aerosols generated in gaseous media, as nanodispersions, behave, with respect to the concentration levels and the lifespan, as trimodal distributions (the three domains with Gaussian distributions: fine or Aitken under 50 �m, medium between 50 and 500 mm and, respectively, coarse or large between 500 and 1000 mm). The generation in latent state is dependent on the active surface of the source (number of generator centres, the size and position of the fluorescences, the porosity, size and shape of the source, etc.), the climatic parameters, but also on a series of other characteristics of the gaseous medium. Our team has demonstrated experimentally that saline aerosols, NaCl type, besides the ability to prevent and treat broncho-respiratory and cardiac conditions, through coassistance of saline aerosols of other cations than sodium, and of the iodine anion, have for certain levels of concentrations propitious effects over the immune, bone and muscular systems. Similarly proved has been the positive influence on the development of children, as well the determinant role in increasing athletic performance and of other human subjects performing intense activities.


Author(s):  
Ghasem Ali Dianati Tilaki ◽  
Raziee Rahmani ◽  
Seyed Ali Hoseini ◽  
Ivan Vasenev

Author(s):  
L.E.O. Aparecido ◽  
K.C. Meneses ◽  
G. Rolim de Souza ◽  
M.J.N. Carvalho ◽  
W.B.S. Pereira ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 673
Author(s):  
Chen Yang ◽  
Meichen Fu ◽  
Dingrao Feng ◽  
Yiyu Sun ◽  
Guohui Zhai

Vegetation plays a key role in ecosystem regulation and influences our capacity for sustainable development. Global vegetation cover has changed dramatically over the past decades in response to both natural and anthropogenic factors; therefore, it is necessary to analyze the spatiotemporal changes in vegetation cover and its influencing factors. Moreover, ecological engineering projects, such as the “Grain for Green” project implemented in 1999, have been introduced to improve the ecological environment by enhancing forest coverage. In our study, we analyzed the changes in vegetation cover across the Loess Plateau of China and the impacts of influencing factors. First, we analyzed the latitudinal and longitudinal changes in vegetation coverage. Second, we displayed the spatiotemporal changes in vegetation cover based on Theil-Sen slope analysis and the Mann-Kendall test. Third, the Hurst exponent was used to predict future changes in vegetation coverage. Fourth, we assessed the relationship between vegetation cover and the influence of individual factors. Finally, ordinary least squares regression and the geographically weighted regression model were used to investigate the influence of various factors on vegetation cover. We found that the Loess Plateau showed large-scale greening from 2000 to 2015, though some regions showed decreasing vegetation cover. Latitudinal and longitudinal changes in vegetation coverage presented a net increase. Moreover, some areas of the Loess Plateau are at risk of degradation in the future, but most areas showed a sustainable increase in vegetation cover. Temperature, precipitation, gross domestic product (GDP), slope, cropland percentage, forest percentage, and built-up land percentage displayed different relationships with vegetation cover. Geographically weighted regression model revealed that GDP, temperature, precipitation, forest percentage, cropland percentage, built-up land percentage, and slope significantly influenced (p < 0.05) vegetation cover in 2000. In comparison, precipitation, forest percentage, cropland percentage, and built-up land percentage significantly affected (p < 0.05) vegetation cover in 2015. Our results enhance our understanding of the ecological and environmental changes in the Loess Plateau.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
T. Mesbahzadeh ◽  
M. M. Miglietta ◽  
M. Mirakbari ◽  
F. Soleimani Sardoo ◽  
M. Abdolhoseini

Precipitation and temperature are very important climatic parameters as their changes may affect life conditions. Therefore, predicting temporal trends of precipitation and temperature is very useful for societal and urban planning. In this research, in order to study the future trends in precipitation and temperature, we have applied scenarios of the fifth assessment report of IPCC. The results suggest that both parameters will be increasing in the studied area (Iran) in future. Since there is interdependence between these two climatic parameters, the independent analysis of the two fields will generate errors in the interpretation of model simulations. Therefore, in this study, copula theory was used for joint modeling of precipitation and temperature under climate change scenarios. By the joint distribution, we can find the structure of interdependence of precipitation and temperature in current and future under climate change conditions, which can assist in the risk assessment of extreme hydrological and meteorological events. Based on the results of goodness of fit test, the Frank copula function was selected for modeling of recorded and constructed data under RCP2.6 scenario and the Gaussian copula function was used for joint modeling of the constructed data under the RCP4.5 and RCP8.5 scenarios.


Sign in / Sign up

Export Citation Format

Share Document