Improvement of cross-machine directional thickness deviation for uniform pressure-sensitive adhesive layer in roll-to-roll slot-die coating process

Author(s):  
Janghoon Park ◽  
Keehyun Shin ◽  
Changwoo Lee
Soft Matter ◽  
2018 ◽  
Vol 14 (47) ◽  
pp. 9681-9692 ◽  
Author(s):  
Chung-Yuen Hui ◽  
Zezhou Liu ◽  
Helen Minsky ◽  
Costantino Creton ◽  
Matteo Ciccotti

The common pressure sensitive adhesive (PSA) tape is a composite consisting of a stiff backing layer and a soft adhesive layer.


2015 ◽  
Vol 3 (22) ◽  
pp. 5859-5868 ◽  
Author(s):  
Seyul Kim ◽  
So Yeon Kim ◽  
Moon Hyun Chung ◽  
Jeonghun Kim ◽  
Jung Hyun Kim

An AgNW/PEDOT:PSS coated, transparent, conducting, roll film (460 mm in width × 20 m in length) with good electrical and optical properties was produced using the roll-to-roll slot-die coating method.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4003
Author(s):  
Seongyong Kim ◽  
Minho Jo ◽  
Jongsu Lee ◽  
Changwoo Lee

Solar cells are important alternatives to fossil fuels for energy generation in today’s world, where the demand for alternative, renewable sources of energy is increasing. However, solar cells, which are installed outdoors, are susceptible to pollution by environmental factors. A solution to overcome this limitation involves coating solar cell surfaces with functional coatings. In this study, we propose a transmittance control method for a tensioned web in a roll-to-roll, transparent, water-repellent film coating. First, we analyzed the effects of process conditions on the transmittance and contact angle of the transparent water-repellent film during roll-to-roll slot-die coating. It was confirmed that the tension was the most dominant factor, followed by the coating gap. Through the tension control, the transmittance was changed by 3.27%, and the contact angle of the DI water was changed by 17.7°. In addition, it was confirmed that the transmittance was changed by 0.8% and the contact angle of DI water by 3.9° via the coating gap control. Based on these results, a transmittance prediction model was developed according to the tension and coating gap, and was then verified experimentally. Finally, a water-repellent film with a high transmittance of 89.77% was obtained using this model.


Author(s):  
Naoya Saiki ◽  
Yuichiro Komasu ◽  
Kazuto Aizawa ◽  
Jun Maeda

In this study, the peeling process of UV-curable pressure sensitive adhesive tape from bump wafer is investigated through the use of finite element analysis, observation of high speed video, and actual wafer back-grinding process testing. In our experiment, a large deformation of adhesive is observed at the edge of bottom of bump, appearing on the side of the bump opposite tape-peeling direction when observed with high speed microscope video. The largely deformed adhesive creates a string shaped elongation. The adhesive residue is caused by the fracture of the adhesive string. We investigated how to generate the adhesive string in the tape-peeling process through the use of finite element analysis. In this analysis, a cohesive element is introduced into the adhesive layer. The analytical result shows the adhesive string at the same position of experiment and the stress distribution is different between the string part and the other area of adhesive. The influence of peeling angle and bump size is also investigated by the same finite element model. As a result, higher peeling angle and smaller bump sizes shows a shorter adhesive string, which lowers the risk of adhesive residue.


Sign in / Sign up

Export Citation Format

Share Document