Optimized design for anti-reflection coating process in roll-to-roll slot-die coating system

2014 ◽  
Vol 30 (5) ◽  
pp. 432-441 ◽  
Author(s):  
Janghoon Park ◽  
Keehyun Shin ◽  
Changwoo Lee
Author(s):  
Alyssa Bellingham ◽  
Nicholas Bromhead ◽  
Adam Fontecchio

There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.


2015 ◽  
Vol 3 (22) ◽  
pp. 5859-5868 ◽  
Author(s):  
Seyul Kim ◽  
So Yeon Kim ◽  
Moon Hyun Chung ◽  
Jeonghun Kim ◽  
Jung Hyun Kim

An AgNW/PEDOT:PSS coated, transparent, conducting, roll film (460 mm in width × 20 m in length) with good electrical and optical properties was produced using the roll-to-roll slot-die coating method.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4003
Author(s):  
Seongyong Kim ◽  
Minho Jo ◽  
Jongsu Lee ◽  
Changwoo Lee

Solar cells are important alternatives to fossil fuels for energy generation in today’s world, where the demand for alternative, renewable sources of energy is increasing. However, solar cells, which are installed outdoors, are susceptible to pollution by environmental factors. A solution to overcome this limitation involves coating solar cell surfaces with functional coatings. In this study, we propose a transmittance control method for a tensioned web in a roll-to-roll, transparent, water-repellent film coating. First, we analyzed the effects of process conditions on the transmittance and contact angle of the transparent water-repellent film during roll-to-roll slot-die coating. It was confirmed that the tension was the most dominant factor, followed by the coating gap. Through the tension control, the transmittance was changed by 3.27%, and the contact angle of the DI water was changed by 17.7°. In addition, it was confirmed that the transmittance was changed by 0.8% and the contact angle of DI water by 3.9° via the coating gap control. Based on these results, a transmittance prediction model was developed according to the tension and coating gap, and was then verified experimentally. Finally, a water-repellent film with a high transmittance of 89.77% was obtained using this model.


MRS Advances ◽  
2019 ◽  
Vol 4 (24) ◽  
pp. 1399-1407 ◽  
Author(s):  
Daniel Burkitt ◽  
Peter Greenwood ◽  
Katherine Hooper ◽  
David Richards ◽  
Vasil Stoichkov ◽  
...  

Abstract:Roll-to-roll slot-die coating with a meniscus guide is used to deposit several layers in a P-I-N perovskite solar cell stack, including the perovskite layer. The use of various length meniscus guides as part of the slot-die head allows controlled coating of these layers at a common coating speed. The length of meniscus guide used is optimised and related to the rheology of the coated ink and appropriate choice of meniscus guide length provides a way to avoid flooding of the coated area and improve coating definition. Initial coating trial results suggest the low-flow limit of slot-die coating is still applicable when using a meniscus guide, which is an important and previously unreported observation, application of this theory to meniscus guide coating provides a useful tool for rapidly determining the appropriate coating conditions that can be used as part of a manufacturing process. This is further explored through the deposition of perovskite solar cells by roll-to-roll slot-die coating. The perovskite layer is deposited using a sequential slot-die deposition process using a low toxicity dimethyl sulfoxide ink for the lead iodide layer, it is found that increasing the drying oven temperature and air flow rate can be used to improve the uniformity of the layer but this can also result in deformation of the plastic substrate. Functioning perovskite solar cells are demonstrated using this technique, but a large variation is found between device performances which is attributed to the poor uniformity of the perovskite layer and damage caused to the substrate by excessive heating.


Sign in / Sign up

Export Citation Format

Share Document