Prediction of High-Frequency Induction Hardening Depth of an AISI 1045 Specimen by Finite Element Analysis and Experiments

2018 ◽  
Vol 19 (12) ◽  
pp. 1821-1827 ◽  
Author(s):  
Jin-Kyu Choi ◽  
Kwan-Seok Park ◽  
Seok-Soon Lee
Author(s):  
Kevin O’Shea

Abstract The use of finite element analysis (FEA) in high frequency (20–40 kHz), high power ultrasonics to date has been limited. Of paramount importance to the performance of ultrasonic tooling (horns) is the accurate identification of pertinent modeshapes and frequencies. Ideally, the ultrasonic horn will vibrate in a purely axial mode with a uniform amplitude of vibration. However, spurious resonances can couple with this fundamental resonance and alter the axial vibration. This effect becomes more pronounced for ultrasonic tools with larger cross-sections. The current study examines a 4.5″ × 6″ cross-section titanium horn which is designed to resonate axially at 20 kHz. Modeshapes and frequencies from 17–23 kHz are examined experimentally and using finite element analysis. The effect of design variables — slot length, slot width, and number of slots — on modeshapes and frequency spacing is shown. An optimum configuration based on the finite element results is prescribed. The computed results are compared with actual prototype data. Excellent correlation between analytical and experimental data is found.


Jurnal METTEK ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Angga Restu Pahlawan ◽  
Rizal Hanifi ◽  
Aa Santosa

Frame adalah salah satu komponen yang sangat penting dalam sebuah kendaraan, yang berfungsi sebagai penopang penumpang, mesin, suspensi, sistem kelistrikan dan lain-lain. Melihat fungsi dari frame sangat penting, maka dalam merancang sebuah frame harus diperhitungkan dengan baik. Banyak sekali jenis pengujian yang sering dipakai dalam perancangan sebuah struktur frame, salah satunya adalah digunakannya metode komputasi dengan menggunakan metode Finite Element Analysis (FEA). Tujuan dari penelitian ini adalah untuk mengetahui distribusi tegangan, regangan, displacement, dan safety factor dari hasil pembebanan statis pada frame gokar. Struktur frame didesain dan dianalisis menggunakan software Solidworks 2016. Material yang digunakan frame adalah baja AISI 1045 hollow tube 273,2 mm, dengan menggunakan pembebanan pengendara sebesar 50 kg dan 70 kg. Hasil dari perhitungan manual didapatkan tegangan maksimum sebesar 4,735  107 N/m2, sedangkan dari simulasi didapatkan sebesar 4,516  107 N/m2. Regangan maksimum didapatkan dari perhitungan manual sebesar 2,310  10-4. Displacement maksimum didapatkan dari perhitungan manual sebesar 1,864  108 mm, sedangkan dari simulasi didapatkan sebesar 1,624  108 mm. Safety factor minimum didapatkan dari perhitungan manual sebesar 11,193, dan perhitungan simulasi didapatkan sebesar 11,736. The frame is one of the most important components in a vehicle, which functions as a support for passengers, engines, suspensions, electrical systems and others. Seeing the function of the frame is very important, so designing a frame must be taken into account well. There are many types of tests that are often used in the design of a frame structure, one of which is the use of computational methods using the Finite Element Analysis (FEA) method. The purpose of this study was to determine the distribution of stress, strain, displacement, and safety factor from the results of static loading on the kart frame. The frame structure was designed and analyzed using Solidworks 2016 software. The material used in the frame is steel AISI 1045 hollow tube 27  3,2 mm, using a rider load of 50 kg and 70 kg. The result of manual calculation shows that the maximum stress is 4,735  107 N/m2, while the simulation results are 4,516  107 N/m2. The maximum strain is obtained from manual calculation of 2,310  10-4. The maximum displacement is obtained from manual calculations of 1,864  108 mm, while the simulation results are 1,624  108 mm. The minimum safety factor obtained from manual calculation is 11,193, and the simulation calculation is 11,736.


2020 ◽  
Vol 14 (5-6) ◽  
pp. 555-567
Author(s):  
Michael Weigelt ◽  
Cornelius Thoma ◽  
Erdong Zheng ◽  
Joerg Franke

AbstractNumerous applications of daily life use flat coils, e.g. in the automotive area, in solar technology and in modern kitchens. One common property that all these applications share, is a flat coil made of high-frequency (HF) litz wires. The coil layout and the properties of the HF litz wire influence the winding process and the efficiency of the application. As a result, the HF litz wire must meet the complex technical requirements of the winding process and of the preferred mechanical, electromagnetic and thermal properties of the HF litz wire itself. Therefore, a reasonable configuration and optimization of HF litz wire has been developed with the help of a finite-element-analysis (FEA). In this work, it is first shown that the mechanical behavior of HF litz wire under tensile and bending stress can be simulated. Since the computational effort for modelling an HF litz wire at the single conductor level is hardly manageable, a suitable modelling strategy is developed and applied using geometric analogous models (GAM). By using such a model, HF litz wires can be designed for the specific application and their behavior in a winding process can be predicted.


Sign in / Sign up

Export Citation Format

Share Document