scholarly journals Relationship between occlusal contact pattern and non-carious cervical lesions among male adults

2010 ◽  
Vol 3 (1) ◽  
pp. 10-14 ◽  
Author(s):  
Y. Hirata ◽  
T. Yamamoto ◽  
T. Kawagoe ◽  
K. Sasaguri ◽  
S. Sato
Author(s):  
Julia Cohen-Levy, DDS, MS, PhD

This chapter reviews T-Scan use in Orthodontics, defines normal T-Scan recordings for orthodontically treated subjects versus untreated subjects, and explains T-Scan use in the case-finishing process. After orthodontic appliance removal changes in the occlusion result from “settling,” because teeth can move freely within the periodontium. Despite a post treatment, visually “perfect” Angle's Class I relationship, ideal occlusal contacts often do not result solely from tooth movement. Creating simultaneous and equal contacts following fixed appliance removal can be accomplished using T-Scan data to optimize the end-result occlusal contact pattern. The software's force distribution and timing indicators (the 2 and 3-Dimensional ForceViews, force percentage per tooth and arch half, the Center of Force, and the Occlusion and Disclusion Times) aid in obtaining an ideal occlusal force distribution during case-finishing. Several case reports highlight combining lingual orthodontic treatment with Orthognathic surgery, where each presented case utilized T-Scan data during active treatment and retention.


Author(s):  
Thomas A. Coleman. DDS

This chapter introduces the air indexing method for detecting and quantifying cervical dentin hypersensitivity (CDH) as a companion to the T-Scan Occlusal Analysis System which evaluates force and timing values for occlusal contacts of teeth. This chapter will also highlight an evidence-based retrospective investigation undertaken between 1979 and 1996 that evaluated associations and/or correlations between diagnosed CDH and its resolution following occlusal adjustment. This retrospective's method described the detection, diagnosis, and treatment of the signs and/or symptoms of the common clinical finding amongst patients with CDH. Stress physics will illustrate how small occlusal contacts magnify the impact that applied occlusal contact force has on the cervical regions of teeth. This resultant cervical stress is etiologic for how non-carious cervical lesions (NCCLs) form and degrade tooth roots. This chapter also explains how biocorrosion from endogenous and exogenous sources produces loss of dentin's protective proteins, glycoproteins, and cementum, which add to the effects of applied occlusal force, thereby creating CDH symptoms and NCCLs. CDH appears resultant from the co-factors of occlusal forces that produce cervical stress, along with biocorrosion, that are both modified by occlusal surface friction. The air indexing method of CDH diagnosis is an objective diagnostic means to detect and quantify CDH symptoms during the formation of cervical lesions. This chapter presents the clinical benefits of melding the T-Scan Occlusal Analysis System with the Air Indexing Method when clinically assessing and treating cervical hard tissue pathologies. The clinician gains significantly more occlusal insight as opposed to using either methodology alone, when air indexing is combined with T-Scan's occlusal contact force and timing data. Lastly, this chapter introduces two case reports of how T-Scan guided occlusal adjustments can be effective at reducing CDH and prohibiting the progression of gingival recession.


Author(s):  
Julia Cohen-Levy, DDS

This chapter reviews T-Scan use in orthodontics from diagnosis to case finishing, and then in retention, while defining normal T-Scan recording parameters for orthodontically-treated subjects versus untreated subjects. T-Scan use in the case-finishing process is also described, which compensates for changes in the occlusion that occur during “post-orthodontic settling,” as teeth move freely within the periodontium to find an equilibrium position when the orthodontic appliances have been removed. T-Scan implementation is necessary because, often, despite there being a post treatment, visually “perfect” angle's Class I relationship established with the orthodontic treatment, ideal occlusal contacts do not result solely from tooth movement. Creating simultaneous and equal force occlusal contacts following fixed appliance removal can be accomplished using T-Scan data to optimize the end-result occlusal contact pattern. The T-Scan software's force distribution and timing indicators (the two- and three-dimensional force views, force percentage per tooth and arch half, the center of force trajectory and icon, the occlusion time [OT], and the disclusion time [DT]), all aid the Orthodontist in obtaining an ideal occlusal force distribution during case-finishing. Fortunately, most orthodontic cases remain asymptomatic during and after tooth movement. However, an occlusal force imbalance or patient discomfort may occur along with the malocclusion that needs orthodontic treatment. Symptomatic cases require special documentation at the baseline, and careful monitoring throughout the entire orthodontic process. The clinical use of T-Scan in these “fragile” cases of patient muscle in-coordination, mandibular deviation, atypical pain, and/or TMJ idiopathic arthritis, are illustrated by several case reports. The presented clinical examples highlight combining T-Scan data recorded during case diagnosis, tooth movement, and in case finishing, with patients that underwent lingual orthodontics and orthognathic surgery, orthodontic treatment using clear aligners, or conventional fixed treatment with a camouflage treatment plan, which require special occlusal finishing (when premolars are extracted in only one arch).


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ramarao Malla ◽  
Mohammad Amjad Kamal

: Cervical cancer (CC) is the fourth leading cancer in women in the age group 15-44 globally. Experimental as well as epidemiological studies identified that type16 and 18 HPV cause 70% of precancerous cervical lesions as well as cervical cancer worldwide by bringing about genetic as well as epigenetic changes in the host genome. The insertion of the HPV genome triggers various defense mechanisms including the silencing of tumor suppressor genes as well as activation of oncogenes associated with cancer metastatic pathway. E6 and E7 are small oncoproteins consisting of 150 and 100 amino acids respectively. These oncoproteins affect the regulation of the host cell cycle by interfering with p53 and pRb. Further these oncoproteins adversely affect the normal functions of the host cell by binding to their signaling proteins. Recent studies demonstrated that E6 and E7 oncoproteins are potential targets for CC. Therefore, this review discusses the role of E6 and E7 oncoproteins in metastasis and drug resistance as well as their regulation, early oncogene mediated signaling pathways. This review also uncovers the recent updates on molecular mechanisms of E6 and E7 mediated phytotherapy, gene therapy, immune therapy, and vaccine strategies as well as diagnosis through precision testing. Therefore, understanding the potential role of E6/E7 in metastasis and drug resistance along with targeted treatment, vaccine, and precision diagnostic strategies could be useful for the prevention and treatment of cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document