scholarly journals Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells

2019 ◽  
Vol 11 (6) ◽  
pp. 851-872 ◽  
Author(s):  
Sujit Basak ◽  
Sombuddha Sengupta ◽  
Krishnananda Chattopadhyay
1991 ◽  
Vol 11 (6) ◽  
pp. 347-385 ◽  
Author(s):  
Franklin M. Harold

In living cells, many biochemical processes are spatially organized: they have a location, and often a direction, in cellular space. In the hands of Peter Mitchell and Jennifer Moyle, the chemiosmotic formulation of this principle proved to be the key to understanding biological energy transduction and related aspects of cellular physiology. For H. E. Huxley and A. F. Huxley, it provided the basis for unravelling the mechanism of muscle contraction; and vectorial biochemistry continues to reverberate through research on cytoplasmic transport, motility and organization. The spatial deployment of biochemical processes serves here as a point of departure for an inquiry into morphogenesis and self-organization during the apical growth of fungal hyphae.


2021 ◽  
Author(s):  
Tia Keyes ◽  
Karmel Sofia Gkika ◽  
Christopher Steven Burke ◽  
Andreas Heise ◽  
Anna Kaargard ◽  
...  

Oxygen is a crucial reagent in many biochemical processes within living cells and its concentration can be an effective marker in disease, particularly in cancer where tissue hypoxia has been...


2009 ◽  
Vol 37 (4) ◽  
pp. 702-706 ◽  
Author(s):  
Liming Ying

At present, technical hurdles remain in probing biochemical processes in living cells and organisms at nanometre spatial resolution, millisecond time resolution and with high specificity and single-molecule sensitivity. Owing to its unique shape, size and electrical properties, the nanopipette has been used to obtain high-resolution topographic images of live cells under physiological conditions, and to create nanoscale features by controlled delivery of biomolecules. In the present paper, I discuss recent progress in the development of a family of new methods for nanosensing and nanomanipulation using nanopipettes.


2020 ◽  
Vol 98 (1) ◽  
pp. 1-6
Author(s):  
Dan Wu ◽  
Shiqi Rong ◽  
Yi Liu ◽  
Fei Zheng ◽  
Yankun Zhao ◽  
...  

It is well known that excessive levels of sulfur dioxide and its derivatives are connected to diverse diseases. Therefore, developing highly sensitive probes to detect and monitor sulfite in living cells is important for the diagnosis of disease and the study of biochemical processes in vivo. In this report, two zero cross-talk ratiometric fluorescent probes were synthesized (CA-ID-MC and CA-BI-MC), which were derived from carbazole-indolenine π-conjugated system for effective detection of sulfite in living cells. Observably, CA-BI-MC exhibited the largest emission shift of 157 nm from 617 to 460 nm with the addition of various concentrations of sulfite, which is beneficial for high-resolution imaging of the sulfite. CA-BI-MC also exhibits high sensitivity and low cytotoxicity. More importantly, this probe successfully located mitochondria and sensed the sulfite in HeLa cells caused by exogenous stimulation.


The Analyst ◽  
2021 ◽  
Author(s):  
Aneta Karpinska ◽  
Marta Pilz ◽  
Joanna Buczkowska ◽  
Paweł Żuk ◽  
Karolina Kucharska ◽  
...  

Quantitative description of biochemical processes inside living cells and at single-molecule levels remains a challenge at the forefront of modern instrumentation and spectroscopy. This paper demonstrates such single-cell, single-molecule analyses...


Author(s):  
R. Y. Tsien ◽  
A. Minta ◽  
M. Poenie ◽  
J.P.Y. Kao ◽  
A. Harootunian

Recent technical advances now enable the continuous imaging of important ionic signals inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+, or Mg2+. The Ca2+ indicators, exemplified by fura-2 and indo-1, derive their high affinity (Kd near 200 nM) and selectivity for Ca2+ to a versatile tetracarboxylate binding site3 modeled on and isosteric with the well known chelator EGTA. The most commonly used pH indicators are fluorescein dyes (such as BCECF) modified to adjust their pKa's and improve their retention inside cells. Na+ indicators are crown ethers with cavity sizes chosen to select Na+ over K+: Mg2+ indicators use tricarboxylate binding sites truncated from those of the Ca2+ chelators, resulting in a more compact arrangement of carboxylates to suit the smaller ion.


Author(s):  
K. Jacobson ◽  
A. Ishihara ◽  
B. Holifield ◽  
F. Zhang

Our laboratory is concerned with understanding the dynamic structure of the plasma membrane with particular reference to the movement of membrane constituents during cell locomotion. In addition to the standard tools of molecular cell biology, we employ both fluorescence recovery after photo- bleaching (FRAP) and digitized fluorescence microscopy (DFM) to investigate individual cells. FRAP allows the measurement of translational mobility of membrane and cytoplasmic molecules in small regions of single, living cells. DFM is really a new form of light microscopy in that the distribution of individual classes of ions, molecules, and macromolecules can be followed in single, living cells. By employing fluorescent antibodies to defined antigens or fluorescent analogs of cellular constituents as well as ultrasensitive, electronic image detectors and video image averaging to improve signal to noise, fluorescent images of living cells can be acquired over an extended period without significant fading and loss of cell viability.


Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


Author(s):  
D. L. Taylor

Cells function through the complex temporal and spatial interplay of ions, metabolites, macromolecules and macromolecular assemblies. Biochemical approaches allow the investigator to define the components and the solution chemical reactions that might be involved in cellular functions. Static structural methods can yield information concerning the 2- and 3-D organization of known and unknown cellular constituents. Genetic and molecular techniques are powerful approaches that can alter specific functions through the manipulation of gene products and thus identify necessary components and sequences of molecular events. However, full knowledge of the mechanism of particular cell functions will require direct measurement of the interplay of cellular constituents. Therefore, there has been a need to develop methods that can yield chemical and molecular information in time and space in living cells, while allowing the integration of information from biochemical, molecular and genetic approaches at the cellular level.


Author(s):  
Shinya Inoué

This paper reports progress of our effort to rapidly capture, and display in time-lapsed mode, the 3-dimensional dynamic architecture of active living cells and developing embryos at the highest resolution of the light microscope. Our approach entails: (A) real-time video tape recording of through-focal, ultrathin optical sections of live cells at the highest resolution of the light microscope; (B) repeat of A at time-lapsed intervals; (C) once each time-lapsed interval, an image at home focus is recorded onto Optical Disk Memory Recorder (OMDR); (D) periods of interest are selected using the OMDR and video tape records; (E) selected stacks of optical sections are converted into plane projections representing different view angles (±4 degrees for stereo view, additional angles when revolving stereos are desired); (F) analysis using A - D.


Sign in / Sign up

Export Citation Format

Share Document